On the solutions of polynomial growth for a multidimensional generalized Cauchy–Riemann system
Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a multidimensional generalized Cauchy–Riemann system we study the Noether property in Hölder spaces of functions bounded on the whole plane. For the case of constant coefficients we consider the solutions defined on the whole plane or on the half-plane and having a polynomial growth at the infinity. For the two- and three-dimensional cases we find appropriate conditions for the coefficients ensuring that the solutions to the first problem is finite-dimensional or zero or infinite-dimensional, respectively.
Keywords: multidimensional generalized of Cauchy–Riemann systems, solutions of polynomial growth, Noether property.
Mots-clés : Hölder space
@article{UFA_2015_7_3_a0,
     author = {S. Baizaev},
     title = {On the solutions of polynomial growth for a~multidimensional generalized {Cauchy{\textendash}Riemann} system},
     journal = {Ufa mathematical journal},
     pages = {3--8},
     year = {2015},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a0/}
}
TY  - JOUR
AU  - S. Baizaev
TI  - On the solutions of polynomial growth for a multidimensional generalized Cauchy–Riemann system
JO  - Ufa mathematical journal
PY  - 2015
SP  - 3
EP  - 8
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a0/
LA  - en
ID  - UFA_2015_7_3_a0
ER  - 
%0 Journal Article
%A S. Baizaev
%T On the solutions of polynomial growth for a multidimensional generalized Cauchy–Riemann system
%J Ufa mathematical journal
%D 2015
%P 3-8
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a0/
%G en
%F UFA_2015_7_3_a0
S. Baizaev. On the solutions of polynomial growth for a multidimensional generalized Cauchy–Riemann system. Ufa mathematical journal, Tome 7 (2015) no. 3, pp. 3-8. http://geodesic.mathdoc.fr/item/UFA_2015_7_3_a0/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 509 pp. | MR

[2] Safarov D., “O razmernosti prostranstva reshenii stepennogo rosta dlya odnogo klassa ellipticheskikh sistem”, Differentsialnye uravneniya, 15:1 (1979), 112–115 | MR | Zbl

[3] Baizaev S., “O medlenno rastuschikh resheniyakh odnoi mnogomernoi ellipticheskoi sistemy”, Doklady AN TadzhSSR, 34:6 (1991), 329–332 | MR

[4] Baizaev S., Ellipticheskie sistemy s ogranichennymi koeffitsientami na ploskosti, NGU, Novosibirsk, 1999, 74 pp.

[5] Baizaev S., Mukhamadiev E., “O nëterovosti i indekse mnogomernykh ellipticheskikh operatorov v gëlderovykh prostranstvakh”, Sovremennye metody v teorii kraevykh zadach, Trudy Voronezhskoi vesennei matematicheskoi shkoly “Pontryaginskie chteniya-XI”. Ch. 1, Voronezh, 2000, 75–84