On spectral and pseudospectral functions of first-order symmetric systems
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 115-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider first-order symmetric system $Jy'-B(t)y=\Delta(t)f(t)$ on an interval $\mathcal I=[a,b)$ with the regular endpoint $a$. A distribution matrix-valued function $\Sigma(s)$, $s\in\mathbb R$, is called a pseudospectral function of such a system if the corresponding Fourier transform is a partial isometry with the minimally possible kernel. The main result is a parametrization of all pseudospectral functions of a given system by means of a Nevanlinna boundary parameter $\tau$. Similar parameterizations for regular systems have earlier been obtained by Arov and Dym, Langer and Textorius, A. Sakhnovich.
Keywords: First-order symmetric system, spectral function, pseudospectral function, characteristic matrix.
Mots-clés : Fourier transform
@article{UFA_2015_7_2_a8,
     author = {V. I. Mogilevskii},
     title = {On spectral and pseudospectral functions of first-order symmetric systems},
     journal = {Ufa mathematical journal},
     pages = {115--136},
     year = {2015},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/}
}
TY  - JOUR
AU  - V. I. Mogilevskii
TI  - On spectral and pseudospectral functions of first-order symmetric systems
JO  - Ufa mathematical journal
PY  - 2015
SP  - 115
EP  - 136
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/
LA  - en
ID  - UFA_2015_7_2_a8
ER  - 
%0 Journal Article
%A V. I. Mogilevskii
%T On spectral and pseudospectral functions of first-order symmetric systems
%J Ufa mathematical journal
%D 2015
%P 115-136
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/
%G en
%F UFA_2015_7_2_a8
V. I. Mogilevskii. On spectral and pseudospectral functions of first-order symmetric systems. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 115-136. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/

[1] I. S. Kats, “Linear relations generated by the canonical differential equation of phase dimension 2, and eigenfunction expansion”, St. Petersburg Math. J., 14:3 (2003), 429–452 | MR | Zbl

[2] H. Langer, B. Textorius, “Spectral functions of a symmetric linear relation with a directing mapping, I”, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), 165–176 | DOI | MR | Zbl

[3] A. L. Sakhnovich, L. A. Sakhnovich, I. Ya. Roitberg, Inverse problems and nonlinear evolution equations. Solutions, Darboux matrices and Weyl–Titchmarsh functions, De Gruyter Studies in Mathematics, 47, De Gruyter, Berlin, 2013 | MR | Zbl

[4] D. Z. Arov, H. Dym, Bitangential direct and inverse problems for systems of integral and differential equations, Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[5] S. Albeverio, M. M. Malamud, V. I. Mogilevskii, “On Titchmarsh–Weyl functions and eigenfunction expansions of first-order symmetric systems”, Integr. Equ. Oper. Theory., 77:3 (2013), 303–354 | DOI | MR | Zbl

[6] V. I. Mogilevskii, “On exit space extensions of symmetric operators with applications to first order symmetric systems”, Methods Funct. Anal. Topology, 19:3 (2013), 268–292 | MR | Zbl

[7] H. Langer, B. Textorius, “Spectral functions of a symmetric linear relation with a directing mapping, II”, Proc. Roy. Soc. Edinburgh Sect. A, 101:1–2 (1985), 111–124 | DOI | MR | Zbl

[8] V. M. Bruk, “On a class of boundary value problems with spectral parameter in the boundary condition”, Math. USSR-Sb., 29:2 (1976), 186–192 | DOI | MR | Zbl

[9] V. M. Bruk, “Extensions of symmetric relations”, Math. Notes, 22:6 (1977), 953–958 | DOI | MR | Zbl

[10] V. A. Derkach, M. M. Malamud, “Generalized resolvents and the boundary value problems for Hermitian operators with gaps”, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[11] V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. de Snoo, “Generalized resolvents of symmetric operators and admissibility”, Methods Funct. Anal. Topol., 6:3 (2000), 24–55 | MR | Zbl

[12] Naukova Dumka, Kiev, 1984 | Zbl | Zbl

[13] A. N. Kochubei, “Extensions of symmetric operators and symmetric binary relations”, Math. Notes, 17:1 (1975), 25–28 | DOI | MR | Zbl

[14] M. M. Malamud, “On the formula of generalized resolvents of a nondensely defined Hermitian operator”, Ukr. Math. Zh., 44:12 (1992), 1658–1688 | MR | Zbl

[15] V. Khrabustovskyi, “Expansion in eigenfunctions of relations generated by pair of operator differential expressions”, Methods Funct. Anal. Topology, 15:2 (2009), 137–151 | MR | Zbl

[16] V. Khrabustovskyi, “Eigenfunction expansions associated with an operator differential equation non-linearly depending on a spectral parameter”, Methods Funct. Anal. Topol., 20:1 (2014), 68–91 | MR | Zbl

[17] N. Dunford, J. T. Schwartz, Linear operators. Part 2. Spectral theory, Interscience Publishers, New York–London, 1963 | MR

[18] I. S. Kats, “On Hilbert spaces generated by monotone Hermitian matrix-functions”, Khar'kov. Gos. Univ. Uchen. Zap., 34 (1950), 95–113 | MR

[19] V. I. Mogilevskii, “Nevanlinna type families of linear relations and the dilation theorem”, Methods Funct. Anal. Topol., 12:1 (2006), 38–56 | MR | Zbl

[20] V. I. Mogilevskii, “Description of generalized resolvents and characteristic matrices of differential operators in terms of the boundary parameter”, Math. Notes, 90:4 (2011), 548–570 | DOI | MR | Zbl

[21] V. I. Mogilevskii, “Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers”, Methods Funct. Anal. Topol., 12:3 (2006), 258–280 | MR | Zbl

[22] V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. de Snoo, “Boundary relations and generalized resolvents of symmetric operators”, Russian J. Math. Ph., 16:1 (2009), 17–60 | DOI | MR | Zbl

[23] V. M. Bruk, “On a number of linearly independent quadratically integrable solutions of systems of differential equations”, Functional Analysis, 5, Ul'yanovsk Pedagogical Institute, 1975, 25–33

[24] M. Lesch, M. M. Malamud, “On the deficiency indices and self-adjointness of symmetric Hamiltonian systems”, J. Diff. Equat., 189:2 (2003), 556–615 | DOI | MR | Zbl

[25] V. Mogilevskii, “Boundary pairs and boundary conditions for general (not necessarily definite) first-order symmetric systems with arbitrary deficiency indices”, Math. Nachr., 285:14–15 (2012), 1895–1931 | DOI | MR | Zbl

[26] B. C. Orcutt, Canonical differential equations, PhD thesis, Univ. of Virginia, 1969 | MR

[27] V. M. Bruk, “Linear relations in a space of vector functions”, Math. Notes, 24:4 (1978), 767–773 | DOI | MR | Zbl

[28] A. Dijksma, H. Langer, H. S. V. de Snoo, “Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions”, Math. Nachr., 161:1 (1993), 107–153 | DOI | MR

[29] A. V. S̆traus, “On generalized resolvents and spectral functions of differential operators of an even order”, Izv. Akad. Nauk. SSSR Ser. Mat., 21:6 (1957), 785–808 | MR | Zbl

[30] V. I. Khrabustovsky, “On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. General case”, J. Math. Phys. Anal. Geom., 2:2 (2006), 149–175 | MR | Zbl

[31] V. M. Bruk, “On the characteristic operator of an integral equation with a nevanlinna measure in the infinite-dimensional case”, J. Math. Phys. Anal. Geom., 10:2 (2014), 163–188 | MR | Zbl

[32] V. I. Mogilevskii, “On generalized resolvents and characteristic matrices of first-order symmetric systems”, Methods Funct. Anal. Topol., 20:4 (2014), 328–348 | MR | Zbl