On spectral and pseudospectral functions of first-order symmetric systems
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 115-136
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider first-order symmetric system $Jy'-B(t)y=\Delta(t)f(t)$ on an interval $\mathcal I=[a,b)$ with the regular endpoint $a$. A distribution matrix-valued function $\Sigma(s)$, $s\in\mathbb R$, is called a pseudospectral function of such a system if the corresponding Fourier transform is a partial isometry with the minimally possible kernel. The main result is a parametrization of all pseudospectral functions of a given system by means of a Nevanlinna boundary parameter $\tau$. Similar parameterizations for regular systems have earlier been obtained by Arov and Dym, Langer and Textorius, A. Sakhnovich.
Keywords:
First-order symmetric system, spectral function, pseudospectral function, characteristic matrix.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{UFA_2015_7_2_a8,
author = {V. I. Mogilevskii},
title = {On spectral and pseudospectral functions of first-order symmetric systems},
journal = {Ufa mathematical journal},
pages = {115--136},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/}
}
V. I. Mogilevskii. On spectral and pseudospectral functions of first-order symmetric systems. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 115-136. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/