On spectral and pseudospectral functions of first-order symmetric systems
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 115-136

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider first-order symmetric system $Jy'-B(t)y=\Delta(t)f(t)$ on an interval $\mathcal I=[a,b)$ with the regular endpoint $a$. A distribution matrix-valued function $\Sigma(s)$, $s\in\mathbb R$, is called a pseudospectral function of such a system if the corresponding Fourier transform is a partial isometry with the minimally possible kernel. The main result is a parametrization of all pseudospectral functions of a given system by means of a Nevanlinna boundary parameter $\tau$. Similar parameterizations for regular systems have earlier been obtained by Arov and Dym, Langer and Textorius, A. Sakhnovich.
Keywords: First-order symmetric system, spectral function, pseudospectral function, characteristic matrix.
Mots-clés : Fourier transform
@article{UFA_2015_7_2_a8,
     author = {V. I. Mogilevskii},
     title = {On spectral and pseudospectral functions of first-order symmetric systems},
     journal = {Ufa mathematical journal},
     pages = {115--136},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/}
}
TY  - JOUR
AU  - V. I. Mogilevskii
TI  - On spectral and pseudospectral functions of first-order symmetric systems
JO  - Ufa mathematical journal
PY  - 2015
SP  - 115
EP  - 136
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/
LA  - en
ID  - UFA_2015_7_2_a8
ER  - 
%0 Journal Article
%A V. I. Mogilevskii
%T On spectral and pseudospectral functions of first-order symmetric systems
%J Ufa mathematical journal
%D 2015
%P 115-136
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/
%G en
%F UFA_2015_7_2_a8
V. I. Mogilevskii. On spectral and pseudospectral functions of first-order symmetric systems. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 115-136. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a8/