@article{UFA_2015_7_2_a6,
author = {A. A. Lishanskii},
title = {Existence of hypercyclic subspaces for {Toeplitz} operators},
journal = {Ufa mathematical journal},
pages = {102--105},
year = {2015},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/}
}
A. A. Lishanskii. Existence of hypercyclic subspaces for Toeplitz operators. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 102-105. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/
[1] K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bulletin of American Mathematical Society (3), 36 (1999), 345–381 | DOI | MR | Zbl
[2] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, 2009, 352 pp. | MR | Zbl
[3] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Springer, Berlin, 2011, 388 pp. | MR | Zbl
[4] S. Rolewicz, “On orbits of elements”, Studia Math, 32 (1969), 17–22 | MR | Zbl
[5] P. S. Bourdon, “Invariant manifolds of hypercyclic vectors”, Proceedings of the American Mathematical Society (3), 118 (1993), 845–847 | DOI | MR | Zbl
[6] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, Journal of Functional Analysis, 98 (1991), 229–269 | DOI | MR | Zbl
[7] A. Montes-Rodriguez, “Banach spaces of hypercyclic vectors”, Michigan Mathematical Journal, 43 (1996), 419–436 | DOI | MR | Zbl
[8] M. Gonzalez, F. Leon-Saavedra, A. Montes-Rodriguez, “Semi-Fredholm Theory: Hypercyclic and supercyclic subspaces”, Proceedings of the London Mathematical Society (3), 81 (2000), 169–189 | DOI | MR | Zbl
[9] S. Shkarin, “On the set of hypercyclic vectors for the differentiation operator”, Israel Journal of Mathematics, 180 (2010), 271–283 | DOI | MR | Zbl
[10] Q. Menet, “Hypercyclic subspaces and weighted shifts”, Advances in Mathematics, 255 (2014), 305–337 | DOI | MR | Zbl
[11] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966, 199 pp. | MR | Zbl
[12] E. B. Davies, Linear Operators and Their Spectra, Cambridge Studies in Advanced Advanced Mathematics, 106, Cambridge University Press, 2007, 451 pp. | MR | Zbl