Existence of hypercyclic subspaces for Toeplitz operators
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 102-105

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct a class of coanalytic Toeplitz operators, which have an infinite-dimensional closed subspace, where any non-zero vector is hypercyclic. Namely, if for a function $\varphi$ which is analytic in the open unit disc $\mathbb D$ and continuous in its closure the conditions $\varphi(\mathbb T)\cap\mathbb T\ne\emptyset$ and $\varphi(\mathbb D)\cap\mathbb T\ne\emptyset$ are satisfied, then the operator $\varphi(S^*)$ (where $S^*$ is the backward shift operator in the Hardy space) has the required property. The proof is based on an application of a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez.
Keywords: Toeplitz operators, hypercyclic operators, essential spectrum, Hardy space.
@article{UFA_2015_7_2_a6,
     author = {A. A. Lishanskii},
     title = {Existence of hypercyclic subspaces   for {Toeplitz} operators},
     journal = {Ufa mathematical journal},
     pages = {102--105},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/}
}
TY  - JOUR
AU  - A. A. Lishanskii
TI  - Existence of hypercyclic subspaces   for Toeplitz operators
JO  - Ufa mathematical journal
PY  - 2015
SP  - 102
EP  - 105
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/
LA  - en
ID  - UFA_2015_7_2_a6
ER  - 
%0 Journal Article
%A A. A. Lishanskii
%T Existence of hypercyclic subspaces   for Toeplitz operators
%J Ufa mathematical journal
%D 2015
%P 102-105
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/
%G en
%F UFA_2015_7_2_a6
A. A. Lishanskii. Existence of hypercyclic subspaces   for Toeplitz operators. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 102-105. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/