Existence of hypercyclic subspaces for Toeplitz operators
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 102-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we construct a class of coanalytic Toeplitz operators, which have an infinite-dimensional closed subspace, where any non-zero vector is hypercyclic. Namely, if for a function $\varphi$ which is analytic in the open unit disc $\mathbb D$ and continuous in its closure the conditions $\varphi(\mathbb T)\cap\mathbb T\ne\emptyset$ and $\varphi(\mathbb D)\cap\mathbb T\ne\emptyset$ are satisfied, then the operator $\varphi(S^*)$ (where $S^*$ is the backward shift operator in the Hardy space) has the required property. The proof is based on an application of a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez.
Keywords: Toeplitz operators, hypercyclic operators, essential spectrum, Hardy space.
@article{UFA_2015_7_2_a6,
     author = {A. A. Lishanskii},
     title = {Existence of hypercyclic subspaces for {Toeplitz} operators},
     journal = {Ufa mathematical journal},
     pages = {102--105},
     year = {2015},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/}
}
TY  - JOUR
AU  - A. A. Lishanskii
TI  - Existence of hypercyclic subspaces for Toeplitz operators
JO  - Ufa mathematical journal
PY  - 2015
SP  - 102
EP  - 105
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/
LA  - en
ID  - UFA_2015_7_2_a6
ER  - 
%0 Journal Article
%A A. A. Lishanskii
%T Existence of hypercyclic subspaces for Toeplitz operators
%J Ufa mathematical journal
%D 2015
%P 102-105
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/
%G en
%F UFA_2015_7_2_a6
A. A. Lishanskii. Existence of hypercyclic subspaces for Toeplitz operators. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 102-105. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a6/

[1] K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bulletin of American Mathematical Society (3), 36 (1999), 345–381 | DOI | MR | Zbl

[2] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, 2009, 352 pp. | MR | Zbl

[3] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Springer, Berlin, 2011, 388 pp. | MR | Zbl

[4] S. Rolewicz, “On orbits of elements”, Studia Math, 32 (1969), 17–22 | MR | Zbl

[5] P. S. Bourdon, “Invariant manifolds of hypercyclic vectors”, Proceedings of the American Mathematical Society (3), 118 (1993), 845–847 | DOI | MR | Zbl

[6] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, Journal of Functional Analysis, 98 (1991), 229–269 | DOI | MR | Zbl

[7] A. Montes-Rodriguez, “Banach spaces of hypercyclic vectors”, Michigan Mathematical Journal, 43 (1996), 419–436 | DOI | MR | Zbl

[8] M. Gonzalez, F. Leon-Saavedra, A. Montes-Rodriguez, “Semi-Fredholm Theory: Hypercyclic and supercyclic subspaces”, Proceedings of the London Mathematical Society (3), 81 (2000), 169–189 | DOI | MR | Zbl

[9] S. Shkarin, “On the set of hypercyclic vectors for the differentiation operator”, Israel Journal of Mathematics, 180 (2010), 271–283 | DOI | MR | Zbl

[10] Q. Menet, “Hypercyclic subspaces and weighted shifts”, Advances in Mathematics, 255 (2014), 305–337 | DOI | MR | Zbl

[11] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966, 199 pp. | MR | Zbl

[12] E. B. Davies, Linear Operators and Their Spectra, Cambridge Studies in Advanced Advanced Mathematics, 106, Cambridge University Press, 2007, 451 pp. | MR | Zbl