Regularization of sequences in sense of E. M. Dyn'kin
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 64-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of strong regularization of positive sequences. We prove an existence criterion of regular in the sense of E. M. Dyn'kin non-quasi-analiticity minorant. The criterion is given in terms on the smallest concave majorant of the logarithm of its trace function. The proof is based on the properties of the Legendre transformation.
Keywords: regular sequences
Mots-clés : Carleman class, Legendre transform.
@article{UFA_2015_7_2_a4,
     author = {R. A. Gaisin},
     title = {Regularization of sequences in sense of {E.} {M.~Dyn'kin}},
     journal = {Ufa mathematical journal},
     pages = {64--70},
     year = {2015},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a4/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - Regularization of sequences in sense of E. M. Dyn'kin
JO  - Ufa mathematical journal
PY  - 2015
SP  - 64
EP  - 70
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a4/
LA  - en
ID  - UFA_2015_7_2_a4
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T Regularization of sequences in sense of E. M. Dyn'kin
%J Ufa mathematical journal
%D 2015
%P 64-70
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a4/
%G en
%F UFA_2015_7_2_a4
R. A. Gaisin. Regularization of sequences in sense of E. M. Dyn'kin. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 64-70. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a4/

[1] Gaisin R. A., “Otsenka promezhutochnykh proizvodnykh i teoremy tipa Banga. I”, Algebra i analiz, 27:1 (2015), 23–48

[2] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955, 268 pp. | MR

[3] Dynkin E. M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy. Teoriya funktsii i funktsionalnyi analiz, Trudy VII Zimnei shkoly (Drogobych), AN SSSR, Tsentralnyi ekonomiko-matematicheskii institut, M., 1976, 40–73 | MR

[4] Mandelbroit S., Kvazianaliticheskie klassy funktsii, M.–L., 1937, 108 pp.

[5] Gaisin A. M., Kinzyabulatov I. G., “Teorema tipa Levinsona–Schëberga. Primeneniya”, Matem. sb., 199:7 (2008), 41–62 | DOI | MR

[6] Gaisin R. A., “Kriterii kvazianalitichnosti tipa Salinasa–Korenblyuma dlya oblastei obschego vida”, Ufimskii matem. zhurnal, 5:3 (2013), 28–40

[7] P. Koosis, The logarithmic integral, v. I, Cambridge University Press, 1988 (1998) | Zbl

[8] Braichev G. G., Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005, 232 pp.