Mots-clés : Carleman class, Legendre transform.
@article{UFA_2015_7_2_a4,
author = {R. A. Gaisin},
title = {Regularization of sequences in sense of {E.} {M.~Dyn'kin}},
journal = {Ufa mathematical journal},
pages = {64--70},
year = {2015},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a4/}
}
R. A. Gaisin. Regularization of sequences in sense of E. M. Dyn'kin. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 64-70. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a4/
[1] Gaisin R. A., “Otsenka promezhutochnykh proizvodnykh i teoremy tipa Banga. I”, Algebra i analiz, 27:1 (2015), 23–48
[2] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955, 268 pp. | MR
[3] Dynkin E. M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy. Teoriya funktsii i funktsionalnyi analiz, Trudy VII Zimnei shkoly (Drogobych), AN SSSR, Tsentralnyi ekonomiko-matematicheskii institut, M., 1976, 40–73 | MR
[4] Mandelbroit S., Kvazianaliticheskie klassy funktsii, M.–L., 1937, 108 pp.
[5] Gaisin A. M., Kinzyabulatov I. G., “Teorema tipa Levinsona–Schëberga. Primeneniya”, Matem. sb., 199:7 (2008), 41–62 | DOI | MR
[6] Gaisin R. A., “Kriterii kvazianalitichnosti tipa Salinasa–Korenblyuma dlya oblastei obschego vida”, Ufimskii matem. zhurnal, 5:3 (2013), 28–40
[7] P. Koosis, The logarithmic integral, v. I, Cambridge University Press, 1988 (1998) | Zbl
[8] Braichev G. G., Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005, 232 pp.