T\"acklind uniqueness classes for heat equation on noncompact Riemannian manifolds
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 55-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe uniqueness classes for solution of the Cauchy problem for the heat equation on a connected noncompact complete Riemannian manifold. For the case of manifolds with boundary, we assume that the solution satisfies the Dirichlet and Neumann conditions on the boundary. Uniqueness classes are determined by a non-negative function growing no faster than the distance from a fixed point along a geodesics. The classes are similar to uniqueness classes of Täcklind type for the equation on the real line.
Keywords: uniqueness classes, heat equation, Riemannian manifold.
@article{UFA_2015_7_2_a3,
     author = {V. F. Vil'danova and F. Kh. Mukminov},
     title = {T\"acklind uniqueness classes for heat equation on noncompact {Riemannian} manifolds},
     journal = {Ufa mathematical journal},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/}
}
TY  - JOUR
AU  - V. F. Vil'danova
AU  - F. Kh. Mukminov
TI  - T\"acklind uniqueness classes for heat equation on noncompact Riemannian manifolds
JO  - Ufa mathematical journal
PY  - 2015
SP  - 55
EP  - 63
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/
LA  - en
ID  - UFA_2015_7_2_a3
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%A F. Kh. Mukminov
%T T\"acklind uniqueness classes for heat equation on noncompact Riemannian manifolds
%J Ufa mathematical journal
%D 2015
%P 55-63
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/
%G en
%F UFA_2015_7_2_a3
V. F. Vil'danova; F. Kh. Mukminov. T\"acklind uniqueness classes for heat equation on noncompact Riemannian manifolds. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 55-63. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/