Täcklind uniqueness classes for heat equation on noncompact Riemannian manifolds
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 55-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe uniqueness classes for solution of the Cauchy problem for the heat equation on a connected noncompact complete Riemannian manifold. For the case of manifolds with boundary, we assume that the solution satisfies the Dirichlet and Neumann conditions on the boundary. Uniqueness classes are determined by a non-negative function growing no faster than the distance from a fixed point along a geodesics. The classes are similar to uniqueness classes of Täcklind type for the equation on the real line.
Keywords: uniqueness classes, heat equation, Riemannian manifold.
@article{UFA_2015_7_2_a3,
     author = {V. F. Vil'danova and F. Kh. Mukminov},
     title = {T\"acklind uniqueness classes for heat equation on noncompact {Riemannian} manifolds},
     journal = {Ufa mathematical journal},
     pages = {55--63},
     year = {2015},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/}
}
TY  - JOUR
AU  - V. F. Vil'danova
AU  - F. Kh. Mukminov
TI  - Täcklind uniqueness classes for heat equation on noncompact Riemannian manifolds
JO  - Ufa mathematical journal
PY  - 2015
SP  - 55
EP  - 63
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/
LA  - en
ID  - UFA_2015_7_2_a3
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%A F. Kh. Mukminov
%T Täcklind uniqueness classes for heat equation on noncompact Riemannian manifolds
%J Ufa mathematical journal
%D 2015
%P 55-63
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/
%G en
%F UFA_2015_7_2_a3
V. F. Vil'danova; F. Kh. Mukminov. Täcklind uniqueness classes for heat equation on noncompact Riemannian manifolds. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 55-63. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a3/

[1] Tikhonov A. N., “Teoremy edinstvennosti dlya uravneniya teploprovodnosti”, Matem. sb., 42:2 (1935), 199–216 | Zbl

[2] S. Tacklind, “Sur les class quasianalytiques des solutions des equations aux derivees partielles du type parabolique”, Nova Acta Reg. Soc. Schi. Uppsal. Ser., 10:3 (1936), 3–55

[3] Kozhevnikova L. M., “Klassy edinstvennosti reshenii pervoi smeshannoi zadachi dlya uravneniya $u_t=Au$ s kvaziellipticheskim operatorom $A$ v neogranichennykh oblastyakh”, Matem. sb., 198:7 (2007), 59–102 | DOI | MR | Zbl

[4] Oleinik O. A., Radkevich E. V., “Metod vvedeniya parametra dlya issledovaniya evolyutsionnykh uravnenii”, UMN, 33:5 (1978), 7–76 | MR | Zbl

[5] Guschin A. K., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 119(161):4 (1982), 451–508 | MR | Zbl

[6] Sonin I. M., “O klassakh edinstvennosti dlya vyrozhdayuschikhsya parabolicheskikh uravnenii”, Matem. sb., 85(127):4(8) (1971), 459–473 | MR | Zbl

[7] Kamynin L. I., “O edinstvennosti resheniya pervoi kraevoi zadachi v neogranichennoi oblasti dlya parabolicheskogo uravneniya vtorogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 24:9 (1984), 1331–1345 | MR | Zbl

[8] Zhitomirskii Ya. I., “Klassy edinstvennosti resheniya zadachi Koshi dlya lineinykh uravnenii s bystro rastuschimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 31:5 (1967), 1159–1178 | MR | Zbl

[9] Ladyzhenskaya O. A., “O edinstvennosti resheniya zadachi Koshi dlya lineinogo parabolicheskogo uravneniya”, Matem. sb., 27(69):2 (1950), 175–184 | MR | Zbl

[10] Gilimshina V. F., Mukminov F. Kh., “Ob ubyvanii resheniya vyrozhdayuschegosya lineinogo parabolicheskogo uravneniya”, Ufimsk. matem. zhurn., 3:4 (2011), 43–56 | Zbl

[11] Oleinik O. A., Radkevich E. V., “Analitichnost i teoremy tipa Liuvillya i Fragmena–Lindelëfa dlya obschikh parabolicheskikh sistem differentsialnykh uravnenii”, Funkts. analiz i ego pril., 8:4 (1974), 59–70 | MR | Zbl

[12] Oleinik O. A., “O edinstvennosti resheniya zadachi Koshi dlya obschikh parabolicheskikh sistem v klassakh bystrorastuschikh funktsii”, UMN, 29:5 (1974), 229–230 | MR | Zbl

[13] Oleinik O. A., Iosifyan G. A., “Analog printsipa Sen-Venana i edinstvennost reshenii kraevykh zadach v neogranichennykh oblastyakh dlya parabolicheskikh uravnenii”, UMN, 31:6 (1976), 142–166 | MR | Zbl

[14] Kamynin L. I., Khimchenko B. I., “O probleme Tikhonova-Petrovskogo dlya parabolicheskikh uravnenii vtorogo poryadka”, Sib. matem. zhurn., 22:5 (1981), 78–115 | MR

[15] Mukminov F. Kh., “O ravnomernoi stabilizatsii reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 181:11 (1990), 1486–1509 | MR | Zbl

[16] Kozhevnikova L. M., “O klassakh edinstvennosti resheniya pervoi smeshannoi zadachi dlya kvazilineinoi parabolicheskoi sistemy vtorogo poryadka v neogranichennoi oblasti”, Izvestiya RAN, 65:3 (2001), 51–66 | MR | Zbl

[17] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | DOI | MR | Zbl

[18] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR