Initial length scale estimate for waveguides with some random singular potentials
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 33-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work we consider three examples of random singular perturbations in multi-dimensional models of waveguides. These perturbations are described by a large potential supported on a set of a small measure, by a compactly supported fast oscillating potential, and by a delta-potential. In all cases we prove initial length scale estimate.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
random operator, initial length scale estimate, small parameter, spectral localization.
Mots-clés : perturbation
                    
                  
                
                
                Mots-clés : perturbation
@article{UFA_2015_7_2_a2,
     author = {D.I. Borisov and R. Kh. Karimov and T. F. Sharapov},
     title = {Initial length scale estimate for waveguides with some random singular potentials},
     journal = {Ufa mathematical journal},
     pages = {33--54},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a2/}
}
                      
                      
                    TY - JOUR AU - D.I. Borisov AU - R. Kh. Karimov AU - T. F. Sharapov TI - Initial length scale estimate for waveguides with some random singular potentials JO - Ufa mathematical journal PY - 2015 SP - 33 EP - 54 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a2/ LA - en ID - UFA_2015_7_2_a2 ER -
D.I. Borisov; R. Kh. Karimov; T. F. Sharapov. Initial length scale estimate for waveguides with some random singular potentials. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 33-54. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a2/
