Mots-clés : perturbation
@article{UFA_2015_7_2_a2,
author = {D.I. Borisov and R. Kh. Karimov and T. F. Sharapov},
title = {Initial length scale estimate for waveguides with some random singular potentials},
journal = {Ufa mathematical journal},
pages = {33--54},
year = {2015},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a2/}
}
TY - JOUR AU - D.I. Borisov AU - R. Kh. Karimov AU - T. F. Sharapov TI - Initial length scale estimate for waveguides with some random singular potentials JO - Ufa mathematical journal PY - 2015 SP - 33 EP - 54 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a2/ LA - en ID - UFA_2015_7_2_a2 ER -
D.I. Borisov; R. Kh. Karimov; T. F. Sharapov. Initial length scale estimate for waveguides with some random singular potentials. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 33-54. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a2/
[1] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shrëdingera na osi”, Teor. matem. fizika, 132:1 (2002), 97–104 | DOI | MR | Zbl
[2] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Matem. sbornik, 197:4 (2006), 3–32 | DOI | MR | Zbl
[3] D. Borisov, A. Golovina, I. Veselić, Quantum Hamiltonians with weak random abstract perturbation. I. Initial length scale estimate, Preprint, 2015, arXiv: 1501.06503
[4] Borisov D. I., Gadylshin R. R., “O spektre operatora Shrëdingera s bystro ostsilliruyuschim finitnym potentsialom”, Teor. matem. fiz., 147:1 (2006), 58–63 | DOI | MR | Zbl
[5] Borisov D. I., “O nekotorykh singulyarnykh vozmuscheniyakh periodicheskikh operatorov”, Teor. matem. fiz., 151:2 (2007), 207–218 | DOI | MR | Zbl
[6] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984, 352 pp. | MR
[7] D. Borisov, “Asymptotic behaviour of the spectrum of a waveguide with distant perturbation”, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl
[8] D. I. Borisov, “Distant perturbations of the Laplacian in a multi-dimensional space”, Ann. H. Poincaré, 8:7 (2007), 1371–1399 | DOI | MR | Zbl
[9] Bikmetov A. R., Borisov D. I., “O diskretnom spektre operatora Shredingera s uzkoi potentsialnoi yamoi”, Teor. matem. fiz., 145:3 (2005), 372–384 | DOI | MR | Zbl
[10] Bikmetov A. R., “Asimptotiki sobstvennykh elementov kraevykh zadach operatora Shredingera s bolshim potentsialom, lokalizovannym na malom mnozhestve”, Zhur. vychis. matem. matem. fiz., 46:4 (2006), 667–682 | MR | Zbl
[11] F. Martinelli, H. Holden, “On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on $L^2(R^\nu)$”, Comm. Math. Phys., 93:2 (1984), 197–217 | DOI | MR | Zbl
[12] J. Fröhlich, T. Spencer, “Absence of diffusion in the Anderson tight binding model for large disorder or low energy”, Comm. Math. Phys., 88:2 (1983), 151–184 | DOI | MR | Zbl
[13] J. Baker, M. Loss, G. Stolz, “Minimizing the ground state energy of an electron in a randomly deformed lattice”, Comm. Math. Phys., 283:2 (2008), 397–415 | DOI | MR | Zbl
[14] D. Borisov, I. Veselić, “Low lying spectrum of weak-disorder quantum waveguides”, J. Stat. Phys., 142:1 (2011), 58–77 | DOI | MR | Zbl
[15] D. Borisov, I. Veselić, “Low lying eigenvalues of randomly curved quantum waveguides”, J. Funct. Anal., 265:11 (2013), 2877–2909 | DOI | MR | Zbl
[16] J. Bourgain, “An approach to Wegner's estimate using subharmonicity”, J. Stat. Phys., 134:5–6 (2009), 969–978 | DOI | MR | Zbl
[17] L. Erdös, D. Hasler, “Anderson localization at band edges for random magnetic fields”, J. Stat. Phys., 146:5 (2012), 900–923 | DOI | MR | Zbl
[18] L. Erdös, D. Hasler, “Wegner estimate and anderson localization for random magnetic fields”, Comm. Math. Phys., 309:2 (2012), 507–542 | DOI | MR | Zbl
[19] F. Ghribi, P. D. Hislop, F. Klopp, “Localization for Schrödinger operators with random vector potentials”, Adventures in mathematical physics, Contemp. Math., 447, Amer. Math. Soc., Providence, RI, 2007, 123–138 | DOI | MR | Zbl
[20] F. Ghribi, F. Klopp, “Localization for the random displacement model at weak disorder”, Ann. Henri Poincaré, 11:1–2 (2010), 127–149 | DOI | MR | Zbl
[21] P. D. Hislop, F. Klopp, “The integrated density of states for some random operators with nonsign definite potentials”, J. Funct. Anal., 195:1 (2002), 12–47 | DOI | MR | Zbl
[22] F. Kleespies, P. Stollmann, “Lifshitz asymptotics and localization for random quantum waveguides”, Rev. Math. Phys., 12:10 (2000), 1345–1365 | DOI | MR | Zbl
[23] F. Klopp, “Localization for semiclassical continuous random Schrödinger operators. II: The random displacement model”, Helv. Phys. Acta, 66:7–8 (1993), 810–841 | MR | Zbl
[24] F. Klopp, “Localisation pour des opérateurs de Schrödinger aléatoires dans $L^2(\mathbf R^d)$: un modéle semi-classique”, Ann. Inst. Fourier (Grenoble), 45:1 (1995), 265–316 | DOI | MR | Zbl
[25] F. Klopp, “Localization for some continuous random Schrödinger operators”, Comm. Math. Phys., 167:3 (1995), 553–569 | DOI | MR | Zbl
[26] F. Klopp, “Weak disorder localization and {L}ifshitz tails: continuous Hamiltonians”, Ann. Henri Poincaré, 3:4 (2002), 711–737 | DOI | MR | Zbl
[27] F. Klopp, M. Loss, S. Nakamura, G. Stolz, “Localization for the random displacement model”, Duke Math. J., 161:4 (2012), 587–621 | DOI | MR | Zbl
[28] F. Klopp, S. Nakamura, “Spectral extrema and Lifshitz tails for non-monotonous alloy type models”, Comm. Math. Phys., 287:3 (2009), 1133–1143 | DOI | MR | Zbl
[29] F. Klopp, S. Nakamura, F. Nakano, Y. Nomura, “Anderson localization for 2D discrete Schrödinger operators with random magnetic fields”, Ann. Henri Poincaré, 4:4 (2003), 795–811 | DOI | MR | Zbl
[30] V. Kostrykin, I. Veselić, “On the Lipschitz continuity of the integrated density of states for sign-indefinite potentials”, Math. Z., 252:2 (2006), 367–392 | DOI | MR | Zbl
[31] D. Lenz, N. Peyerimhoff, O. Post, I. Veselić, “Continuity properties of the integrated density of states on manifolds”, Japan. J. Math., 3:1 (2008), 121–161 | DOI | MR | Zbl
[32] D. Lenz, N. Peyerimhoff, O. Post, I. Veselić, “Continuity of the integrated density of states on random length metric graphs”, Math. Phys. Anal. Geom., 12:3 (2009), 219–254 | DOI | MR | Zbl
[33] D. Lenz, N. Peyerimhoff, I. Veselić, “Integrated density of states for random metrics on manifolds”, Proc. London Math. Soc., 88:3 (2004), 733–752 | DOI | MR | Zbl
[34] K. Leonhardt, N. Peyerimhoff, M. Tautenhahn, I. Veselić, “Wegner estimate and localization for alloy-type models with sign-changing exponentially decaying single-site potentials”, Rev. Math. Phys., 27:4 (2015), 1550007, 45 pp. | DOI | MR | Zbl
[35] G. Stolz, “Non-monotonic random Schrödinger operators: the Anderson model”, J. Math. Anal. Appl., 248:1 (2000), 173–183 | DOI | MR | Zbl
[36] N. Ueki, “On spectra of random Schrödinger operators with magnetic fields”, Osaka J. Math., 31:1 (1994), 177–187 | MR | Zbl
[37] N. Ueki, “Simple examples of Lifschitz tails in Gaussian random magnetic fields”, Ann. Henri Poincaré, 1:3 (2000), 473–498 | DOI | MR | Zbl
[38] N. Ueki, “Wegner estimate and localization for random magnetic fields”, Osaka J. Math., 45:3 (2008), 565–608 | MR | Zbl
[39] I. Veselić, “Wegner estimate and the density of states of some indefinite alloy type Schrödinger operators”, Lett. Math. Phys., 59:3 (2002), 199–214 | DOI | MR | Zbl