On absence conditions of unconditional bases of exponents
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 17-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the classical space $L^2(-\pi,\pi)$ there exists the unconditional basis $\{e^{ikt}\}$ ($k$ is integer). In the work we study the existence of unconditional bases in weighted Hilbert spaces $L^2(I,\exp h)$ of the functions square integrable on an interval $I$ in the real axis with the weight $\exp(- h)$, where $h$ is a convex function. We obtain conditions showing that unconditional bases of exponents can exist only in very rare cases.
Keywords: Riesz bases, unconditional bases, series of exponents, Hilbert space
Mots-clés : Fourier–Laplace transform.
@article{UFA_2015_7_2_a1,
     author = {R. A. Bashmakov and A. A. Makhota and K. V. Trounov},
     title = {On absence conditions of unconditional bases of exponents},
     journal = {Ufa mathematical journal},
     pages = {17--32},
     year = {2015},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/}
}
TY  - JOUR
AU  - R. A. Bashmakov
AU  - A. A. Makhota
AU  - K. V. Trounov
TI  - On absence conditions of unconditional bases of exponents
JO  - Ufa mathematical journal
PY  - 2015
SP  - 17
EP  - 32
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/
LA  - en
ID  - UFA_2015_7_2_a1
ER  - 
%0 Journal Article
%A R. A. Bashmakov
%A A. A. Makhota
%A K. V. Trounov
%T On absence conditions of unconditional bases of exponents
%J Ufa mathematical journal
%D 2015
%P 17-32
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/
%G en
%F UFA_2015_7_2_a1
R. A. Bashmakov; A. A. Makhota; K. V. Trounov. On absence conditions of unconditional bases of exponents. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 17-32. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/

[1] Bari N. K., “O bazisakh v gilbertovom prostranstve”, Doklady Akademii nauk, 54 (1946), 383–386

[2] Nikolskii N. K., Pavlov B. S., Khruschev S. V., Bezuslovnye bazisy iz eksponent i vosproizvodyaschikh yader. I, Preprint, LOMI, 8–80

[3] Bashmakov R. A., Isaev K. P., “Asimptoticheskoe povedenie integralov Laplasa”, Vestnik Bashkirskogo universiteta, 2006, no. 4, 3–6

[4] Lutsenko V. I., Bezuslovnye bazisy iz eksponent v prostranstvakh Smirnova, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, Institut matematiki s VTs UNTs RAN, 1992

[5] Isaev K. P., Yulmukhametov R. S., “Bezuslovnye bazisy iz vosproizvodyaschikh yader v gilbertovykh prostranstvakh tselykh funktsii”, Ufimskii matematicheskii zhurnal, 5:3 (2013), 67–77

[6] Bashmakov R. A., Sistemy eksponent v vesovykh gilbertovkh prostranstvakh na $R$, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiz.-mat. nauk, Institut matematiki s VTs UNTs RAN, 2006

[7] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Peli–Vinera na vesovye prostranstva”, Matem. zametki, 48:5 (1990), 80–87 | MR | Zbl

[8] Isaev K. P., “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufimskii matematicheskii zhurnal, 2:1 (2010), 71–86 | Zbl

[9] Napalkov V. V., Bashmakov R. A., Yulmukhametov R. S., “Asimptoticheskoe povedenie integralov Laplasa i geometricheskie kharakteristiki vypuklykh funktsii”, Doklady Akademii nauk, 413:1 (2007), 20–22 | MR | Zbl

[10] Bashmakov R. A., Isaev K. P., Yulmukhametov R. S., “O geometricheskikh kharakteristikakh vypuklykh funktsii i integralax Laplasa”, Ufimskii matematicheskii zhurnal, 2:1 (2010), 3–16 | Zbl

[11] Yulmukhametov R. S., “Asimptoticheskaya approksimatsiya subgarmonicheskikh funktsii”, Sib. mat. zh., 26:4 (1985), 159–175 | MR | Zbl

[12] Bashmakov R. A., Putintseva A. A., Yulmukhametov R. S., “Tselye funktsii tipa sinusa i ikh primenenie”, Algebra i analiz, 22:5 (2010), 49–68 | MR | Zbl