On absence conditions of unconditional bases of exponents
Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 17-32
Voir la notice de l'article provenant de la source Math-Net.Ru
In the classical space $L^2(-\pi,\pi)$ there exists the unconditional basis $\{e^{ikt}\}$ ($k$ is integer). In the work we study the existence of unconditional bases in weighted Hilbert spaces $L^2(I,\exp h)$ of the functions square integrable on an interval $I$ in the real axis with the weight $\exp(- h)$, where $h$ is a convex function. We obtain conditions showing that unconditional bases of exponents can exist only in very rare cases.
Keywords:
Riesz bases, unconditional bases, series of exponents, Hilbert space
Mots-clés : Fourier–Laplace transform.
Mots-clés : Fourier–Laplace transform.
@article{UFA_2015_7_2_a1,
author = {R. A. Bashmakov and A. A. Makhota and K. V. Trounov},
title = {On absence conditions of unconditional bases of exponents},
journal = {Ufa mathematical journal},
pages = {17--32},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/}
}
TY - JOUR AU - R. A. Bashmakov AU - A. A. Makhota AU - K. V. Trounov TI - On absence conditions of unconditional bases of exponents JO - Ufa mathematical journal PY - 2015 SP - 17 EP - 32 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/ LA - en ID - UFA_2015_7_2_a1 ER -
R. A. Bashmakov; A. A. Makhota; K. V. Trounov. On absence conditions of unconditional bases of exponents. Ufa mathematical journal, Tome 7 (2015) no. 2, pp. 17-32. http://geodesic.mathdoc.fr/item/UFA_2015_7_2_a1/