On a problem associated with approximation by exponential functions
Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

While formalizing a certain problem of numeric signal processing there arises a mathematical problem on approximating a square integrable function defined on some finite interval of the real line by linear combinations of exponential functions. This problem is solved as an optimization problem by means of minimizing the root-mean-square deviation with respect to the coefficients of the linear combination and with respect to the exponents of the exponential functions. In some cases, minimizing with respect to the exponents, a computational singularity occurs due to small denominators. In the present paper this singularity is shown to be removable and a mechanism of its removal is described.
Keywords: spectrum of a signal, approximation by exponential functions, root-mean-square deviation, small denominators.
@article{UFA_2015_7_1_a7,
     author = {R. A. Sharipov},
     title = {On a~problem associated with approximation by exponential functions},
     journal = {Ufa mathematical journal},
     pages = {83--94},
     year = {2015},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a7/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - On a problem associated with approximation by exponential functions
JO  - Ufa mathematical journal
PY  - 2015
SP  - 83
EP  - 94
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a7/
LA  - en
ID  - UFA_2015_7_1_a7
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T On a problem associated with approximation by exponential functions
%J Ufa mathematical journal
%D 2015
%P 83-94
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a7/
%G en
%F UFA_2015_7_1_a7
R. A. Sharipov. On a problem associated with approximation by exponential functions. Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a7/

[1] Metod naimenshikh kvadratov, Wikipedia, Wikimedia Found. Inc., San Francisco, USA

[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[3] R. A. Sharipov, On root mean square approximation by exponential functions, arXiv: 1411.2467

[4] F. Chatelin, Eigenvalues of matrices, SIAM Publishers, USA, 2013 | Zbl

[5] Kurosh A. G., Kurs vysshei algebry, Nauka, M., 1968

[6] Opredelitel Vantermonda, Wikipedia, Wikimedia Found. Inc., San Francisco, USA

[7] L. R. Turner, Inverse of the Vandermonde matrix with applications, NASA Technical Note D-3547, NASA, Washington, DC, 1966

[8] Quasi-polynomial, Wikipedia, Wikimedia Found. Inc., San Francisco, USA

[9] S. Bagchi, S. K. Mitra, “The nonuniform discrete Fourier transform”, Nonuniform sampling: theory and practice, ed. F. Marvasti, Kluwer Academic/Plenum Publishers, 2001, 325–360 | DOI | MR

[10] Baikov V. A., Zhiber A. V., Murtazina R. D., Osnovy teorii veivletov, BashGU, Ufa, 2012

[11] Teorema Kotelnikova, Wikipedia, Wikimedia Found. Inc., San Francisco, USA