Stability of autoresonance in dissipative systems
Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 58-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a mathematical model describing the initial stage of a capture into autoresonance in nonlinear oscillating systems with a dissipation. Solutions whose amplitude increases unboundedly in time correspond to a resonance. An asymptotic expansion for such solutions is constructed as a power series with constant coefficients. The stability of autoresonance with respect to persistent perturbations is studied by means of Lapunov's second method. We describe the classes of perturbations for which a capture into autoresonance occurs.
Keywords: resonance, nonlinear oscillations, dissipation, stability.
Mots-clés : perturbations
@article{UFA_2015_7_1_a5,
     author = {O. A. Sultanov},
     title = {Stability of autoresonance in dissipative systems},
     journal = {Ufa mathematical journal},
     pages = {58--69},
     year = {2015},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a5/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stability of autoresonance in dissipative systems
JO  - Ufa mathematical journal
PY  - 2015
SP  - 58
EP  - 69
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a5/
LA  - en
ID  - UFA_2015_7_1_a5
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stability of autoresonance in dissipative systems
%J Ufa mathematical journal
%D 2015
%P 58-69
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a5/
%G en
%F UFA_2015_7_1_a5
O. A. Sultanov. Stability of autoresonance in dissipative systems. Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a5/

[1] L. A. Kalyakin, “Asymptotic analysis of autoresonance models”, Russian Math. Surveys, 63:5 (2008), 791–857 | DOI | MR | Zbl

[2] O. M. Kiselev, S. G. Glebov, “The capture into parametric autoresonance”, Nonlinear Dynam., 48:1–2 (2007), 217–230 | DOI | MR | Zbl

[3] L. A. Kalyakin, M. A. Shamsutdinov, “Autoresonant asymptotics in an oscillating system with weak dissipation”, Theoret. and Math. Phys., 160:1 (2009), 960–967 | DOI | MR | Zbl

[4] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[5] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR

[6] Veksler V. I., “Novyi metod uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43:8 (1944), 346–348

[7] A. T. Sinclair, “On the origin of the commensurabilities amongst the satellites of Saturn”, Mon. Not. R. Astron. Soc., 160 (1972), 169–187 | DOI

[8] Golovanivskii K. S., “Giromagnitnyi avtorezonans s peremennoi chastotoi”, Fizika plazmy, 11:3 (1985), 295–299

[9] J. Fajans, L. Friedland, “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[10] S. Glebov, O. Kiselev, N. Tarkhanov, “Autoresonance in a dissipative sytem”, J. Phys. A: Math. Theor., 43 (2010), 215203 | DOI | MR | Zbl

[11] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego prilozh., 23:4 (1989), 63–74 | MR | Zbl

[12] Kalyakin L. A., “Teoremy suschestvovaniya i otsenki reshenii dlya uravnenii glavnogo rezonansa”, Sovremennaya matematika i ee prilozheniya, 85:4 (2012), 73–83

[13] Khapaev M. M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vyssh. shk., M., 1988, 184 pp. | MR

[14] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial, M., 2004, 552 pp.

[15] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 368 pp. | MR

[16] L. A. Kalyakin., O. A. Sultanov, “Stability of autoresonance models”, Differential Equations, 49:3 (2013), 267–281 | DOI | MR | Zbl

[17] Sultanov O. A., “Ustoichivost modelei avtorezonansa otnositelno vozmuschenii, ogranichennykh v srednem”, Tr. IMM UrO RAN, 19, no. 3, 2013, 274–283

[18] O. A. Sultanov, “Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 59–73 | DOI | MR | Zbl

[19] Kolomenskii A. A., Lebedev A. N., Teoriya tsiklicheskikh uskoritelei, GIFML, M., 1962

[20] Sultanov O. A., “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufimskii matematicheskii zhurnal, 2:4 (2010), 88–98 | Zbl

[21] Malkin I. G., Teoriya ustoichivosti dvizheniya, GITTL, M.–L., 1952, 432 pp. | MR

[22] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[23] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987 | MR

[24] Garifullin R. N., “Asimptoticheskoe reshenie zadachi ob avtorezonanse. Vneshnee razlozhenie”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1605–1616 | MR

[25] L. Kalyakin, “Stability under persistent perturbation by white noise”, Journal of Physics: Conference Series, 482 (2014), 012019 | DOI