Mots-clés : perturbations
@article{UFA_2015_7_1_a5,
author = {O. A. Sultanov},
title = {Stability of autoresonance in dissipative systems},
journal = {Ufa mathematical journal},
pages = {58--69},
year = {2015},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a5/}
}
O. A. Sultanov. Stability of autoresonance in dissipative systems. Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 58-69. http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a5/
[1] L. A. Kalyakin, “Asymptotic analysis of autoresonance models”, Russian Math. Surveys, 63:5 (2008), 791–857 | DOI | MR | Zbl
[2] O. M. Kiselev, S. G. Glebov, “The capture into parametric autoresonance”, Nonlinear Dynam., 48:1–2 (2007), 217–230 | DOI | MR | Zbl
[3] L. A. Kalyakin, M. A. Shamsutdinov, “Autoresonant asymptotics in an oscillating system with weak dissipation”, Theoret. and Math. Phys., 160:1 (2009), 960–967 | DOI | MR | Zbl
[4] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[5] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR
[6] Veksler V. I., “Novyi metod uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43:8 (1944), 346–348
[7] A. T. Sinclair, “On the origin of the commensurabilities amongst the satellites of Saturn”, Mon. Not. R. Astron. Soc., 160 (1972), 169–187 | DOI
[8] Golovanivskii K. S., “Giromagnitnyi avtorezonans s peremennoi chastotoi”, Fizika plazmy, 11:3 (1985), 295–299
[9] J. Fajans, L. Friedland, “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI
[10] S. Glebov, O. Kiselev, N. Tarkhanov, “Autoresonance in a dissipative sytem”, J. Phys. A: Math. Theor., 43 (2010), 215203 | DOI | MR | Zbl
[11] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego prilozh., 23:4 (1989), 63–74 | MR | Zbl
[12] Kalyakin L. A., “Teoremy suschestvovaniya i otsenki reshenii dlya uravnenii glavnogo rezonansa”, Sovremennaya matematika i ee prilozheniya, 85:4 (2012), 73–83
[13] Khapaev M. M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vyssh. shk., M., 1988, 184 pp. | MR
[14] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial, M., 2004, 552 pp.
[15] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 368 pp. | MR
[16] L. A. Kalyakin., O. A. Sultanov, “Stability of autoresonance models”, Differential Equations, 49:3 (2013), 267–281 | DOI | MR | Zbl
[17] Sultanov O. A., “Ustoichivost modelei avtorezonansa otnositelno vozmuschenii, ogranichennykh v srednem”, Tr. IMM UrO RAN, 19, no. 3, 2013, 274–283
[18] O. A. Sultanov, “Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 59–73 | DOI | MR | Zbl
[19] Kolomenskii A. A., Lebedev A. N., Teoriya tsiklicheskikh uskoritelei, GIFML, M., 1962
[20] Sultanov O. A., “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufimskii matematicheskii zhurnal, 2:4 (2010), 88–98 | Zbl
[21] Malkin I. G., Teoriya ustoichivosti dvizheniya, GITTL, M.–L., 1952, 432 pp. | MR
[22] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR
[23] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987 | MR
[24] Garifullin R. N., “Asimptoticheskoe reshenie zadachi ob avtorezonanse. Vneshnee razlozhenie”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1605–1616 | MR
[25] L. Kalyakin, “Stability under persistent perturbation by white noise”, Journal of Physics: Conference Series, 482 (2014), 012019 | DOI