Interpolation by series of exponentials in $H(D)$ with real nodes
Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 46-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space of holomorphic functions in a convex domain, we study a problem on interpolation by sums of the series of exponentials converging uniformly on compact subsets of the domain. The discrete set of multiple interpolation nodes is located on the real axis in the domain and has the unique finite accumulation point. We obtain a solvability criterion in terms of distribution of limit directions at infinity for the exponents of exponentials.
Keywords: holomorphic function, interpolation with multiplicities, series of exponentials, closed ideal, closed submodule, strong dual space, duality.
Mots-clés : convex domain
@article{UFA_2015_7_1_a4,
     author = {S. G. Merzlyakov and S. V. Popenov},
     title = {Interpolation by series of exponentials in $H(D)$ with real nodes},
     journal = {Ufa mathematical journal},
     pages = {46--57},
     year = {2015},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a4/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
AU  - S. V. Popenov
TI  - Interpolation by series of exponentials in $H(D)$ with real nodes
JO  - Ufa mathematical journal
PY  - 2015
SP  - 46
EP  - 57
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a4/
LA  - en
ID  - UFA_2015_7_1_a4
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%A S. V. Popenov
%T Interpolation by series of exponentials in $H(D)$ with real nodes
%J Ufa mathematical journal
%D 2015
%P 46-57
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a4/
%G en
%F UFA_2015_7_1_a4
S. G. Merzlyakov; S. V. Popenov. Interpolation by series of exponentials in $H(D)$ with real nodes. Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 46-57. http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a4/

[1] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 175 pp. | MR

[2] Merzlyakov S. G., “Integraly ot eksponenty po mere Radona”, Ufimsk. matem. zhurn., 3:2 (2011), 57–80 | Zbl

[3] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968, 279 pp. | MR

[4] Merzlyakov S. G., Popenov S. V., “Kratnaya interpolyatsiya ryadami eksponent v $H(C)$ s uzlami na veschestvennoi osi”, Ufimsk. matem. zhurn., 5:3 (2013), 130–143

[5] Napalkov V. V., Nuyatov A. A., “Mnogotochechnaya zadacha Valle Pussena dlya operatorov svertki”, Matem. sb., 203:2 (2012), 77–86 | DOI | MR | Zbl

[6] Krivosheev A. S., “Kriterii analiticheskogo prodolzheniya funktsii iz invariantnykh podprostranstv v vypuklykh oblastyakh kompleksnoi ploskosti”, Izv. RAN Ser. matem., 68:1 (2004), 43–78 | DOI | MR | Zbl

[7] Napalkov V. V., Zimens K. R., “Kratnaya zadacha Valle-Pussena na vypuklykh oblastyakh v yadre operatora svërtki”, Doklady RAN, 458:4 (2014), 387–389 | DOI | Zbl

[8] Napalkov V. V., Popenov S. V., “Golomorfnaya zadacha Koshi dlya operatora svertki v analiticheski ravnomernykh prostranstvakh i razlozheniya Fishera”, Dokl. RAN, 381:2 (2001), 164–166 | MR | Zbl

[9] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostrastv, vazhnykh v prilozheniyakh”, Sb. perev. Matematika, 1:1 (1957), 60–77

[10] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982, 240 pp. | MR

[11] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR

[12] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130):1(5) (1972), 3–30 | MR | Zbl

[13] Merzlyakov S. G., “Invariantnye podprostranstva operatora kratnogo differentsirovaniya”, Matem. zametki, 33:5 (1983), 701–713 | MR | Zbl

[14] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR

[15] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR

[16] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimsk. matem. zhurn., 3:2 (2011), 43–56 | Zbl

[17] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh mnogochlenov”, Ufimsk. matem. zhurn., 5:4 (2013), 84–90

[18] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[19] Krivosheeva O. A., Krivosheev A. S., “Kriterii vypolneniya fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz i ego pril., 46:4 (2012), 14–30 | DOI | MR | Zbl

[20] Krivosheev A. S., Krivosheeva O. A., “Zamknutost mnozhestva summ ryadov Dirikhle”, Ufimsk. matem. zhurn., 5:3 (2013), 96–120

[21] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp. | MR