Equivalence of second-order ODEs to equations of first Painlevé equation type
Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 19-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider equivalence problem for equations of a degenerate type, which involve, for example, the first Painlevé equation. In terms of algebraic and differential invariants of the family of equations with the cubic nonlinearity in the first-order derivative, we obtain the necessary condition of equivalence to some equations of this type with a known solution. We prove a criterion of equivalence to the first Painlevé equation under point transformations.
Mots-clés : first Painlevé equation, equivalence, invariant.
@article{UFA_2015_7_1_a2,
     author = {Yu. Yu. Bagderina},
     title = {Equivalence of second-order {ODEs} to equations of first {Painlev\'e} equation type},
     journal = {Ufa mathematical journal},
     pages = {19--30},
     year = {2015},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a2/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Equivalence of second-order ODEs to equations of first Painlevé equation type
JO  - Ufa mathematical journal
PY  - 2015
SP  - 19
EP  - 30
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a2/
LA  - en
ID  - UFA_2015_7_1_a2
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Equivalence of second-order ODEs to equations of first Painlevé equation type
%J Ufa mathematical journal
%D 2015
%P 19-30
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a2/
%G en
%F UFA_2015_7_1_a2
Yu. Yu. Bagderina. Equivalence of second-order ODEs to equations of first Painlevé equation type. Ufa mathematical journal, Tome 7 (2015) no. 1, pp. 19-30. http://geodesic.mathdoc.fr/item/UFA_2015_7_1_a2/

[1] R. Liouville, “Sur les invariants de certaines équations différentielles et sur leurs applications”, J. École Polytechnique, 59 (1889), 7–76

[2] A. Tresse, “Sur les invariants différentiels des groupes continus de transformations”, Acta Math., 18:1 (1894), 1–88 | DOI | MR

[3] É. Cartan, “Sur les variétés à connexion projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | MR | Zbl

[4] G. Thomsen, “Über die topologischen Invarianten der Differentialgleichung $y''=f(x,y)y'^3+g(x,y)y'^2+h(x,y)y'+k(x,y)$”, Abh. Math. Semin. Hamb. Univ., 7 (1930), 301–328 | DOI | MR | Zbl

[5] V. V. Dmitrieva, R. A. Sharipov, On the point transformations for the second order differential equations. I, 1997, arXiv: solv-int/9703003

[6] R. A. Sharipov, On the point transformations for the equations $y''=P+3Qy'+3Ry'^2+Sy'^3$, 1997, arXiv: ; Вестник БашГУ, 1:1 (1998), 5–8 solv-int/9706003

[7] R. A. Sharipov, Effective procedure of point classification for the equations $y''=P+3Qy'+3Ry'^2+Sy'^3$, 1998, arXiv: math/9802027[math.DG]

[8] V. A. Yumaguzhin, “Differential invariants of second order ODEs. I”, Acta Appl. Math., 109 (2010), 283–313 | DOI | MR | Zbl

[9] Morozov O. I., “Problema tochechnoi ekvivalentnosti dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka. II”, Nauchnyi vestnik MGTU GA, 157, 2010, 98–104

[10] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations”, J. Phys. A: Math. Theor., 46 (2013), 295201, 36 pp. | DOI | MR | Zbl

[11] Ains E. L., Obyknovennye differentsialnye uravneniya, ONTI, GNTIU, Kharkov, 1939

[12] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–86 | DOI | MR

[13] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR

[14] N. Kamran, K. G. Lamb, W. F. Shadwick, “The local equivalence problem for $d^2y/dx^2=F(x,y,dy/dx)$ and the Painlevé transcendents”, J. Diff. Geom., 22 (1985), 139–150 | MR | Zbl

[15] N. Kamran, W. F. Shadwick, “A differential geometric characterization of the first Painlevé transcendent”, Math. Ann., 279 (1987), 117–123 | DOI | MR | Zbl

[16] Dmitrieva V. V., “O klassifikatsii uravnenii Penleve-I i Penleve-II otnositelno tochechnykh preobrazovanii obschego vida”, Vestnik BashGU, 1:1 (1998), 9–11

[17] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On some equivalence problems for differential equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993 | MR | Zbl

[18] R. Dridi, “On the geometry of the first and second Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 125201, 9 pp. | DOI | MR | Zbl

[19] Kartak V. V., “Yavnoe reshenie problemy ekvivalentnosti dlya nekotorykh uravnenii Penleve”, UMZh, 1:3 (2009), 46–56 | Zbl

[20] M. Euler, N. Euler, A. Strömberg, E. Âström, “Transformation between a generalized Emden-Fowler equation and the first Painlevé transcendent”, Math. Meth. Appl. Sci., 30:16 (2007), 2121–2124 | DOI | MR | Zbl

[21] M. V. Babich, L. A. Bordag, “Projective differential geometrical structure of the Painlevé equations”, J. Differ. Equations, 157:2 (1999), 452–485 | DOI | MR | Zbl

[22] Bagderina Yu. Yu., “Ekvivalentnost obyknovennykh differentsialnykh uravnenii vtorogo poryadka uravneniyam Penleve”, TMF, 182:2 (2015), 256–276 | DOI | Zbl

[23] J. Hietarinta, V. Dryuma, “Is my ODE a Painlevé equation in disguise?”, J. Nonlin. Math. Phys., 9, Suppl. 1 (2002), 67–74 | DOI | MR

[24] Yu. Yu. Bagderina, N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, J. Math. Phys., 56:1 (2015), 013507, 15 pp. | DOI | Zbl

[25] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001 | MR

[26] R. Milson, F. Valiquette, “Point equivalence of second-order ODEs: maximal invariant classification order”, J. Symb. Comput., 67 (2015), 16–41 | DOI | MR | Zbl