Helly's Theorem and shifts of sets. II. Support function, exponential systems, entire functions
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 122-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal S$ be a family of sets in $\mathbb R^n$, $S$ be the union of all these sets and $C$ be a convex set in $\mathbb R^n$. In terms of support functions of sets in $\mathcal S$ and set $C$ we establish necessary and sufficient conditions under which a parallel shift of the set $C$ covers set $S$. We study independently the two-dimensional case, when sets are unbounded, by employing additional characteristics of sets. We give applications of these results to the problems of incompleteness of exponential systems in function spaces.
Keywords: convex set, system of linear inequalities, shift, support function, incompleteness of exponential systems, indicator of entire function.
@article{UFA_2014_6_4_a9,
     author = {B. N. Khabibullin},
     title = {Helly's {Theorem} and shifts of {sets.~II.} {Support} function, exponential systems, entire functions},
     journal = {Ufa mathematical journal},
     pages = {122--134},
     year = {2014},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a9/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Helly's Theorem and shifts of sets. II. Support function, exponential systems, entire functions
JO  - Ufa mathematical journal
PY  - 2014
SP  - 122
EP  - 134
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a9/
LA  - en
ID  - UFA_2014_6_4_a9
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Helly's Theorem and shifts of sets. II. Support function, exponential systems, entire functions
%J Ufa mathematical journal
%D 2014
%P 122-134
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a9/
%G en
%F UFA_2014_6_4_a9
B. N. Khabibullin. Helly's Theorem and shifts of sets. II. Support function, exponential systems, entire functions. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 122-134. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a9/

[1] Khabibullin B. N., “Teorema Khelli i sdvigi mnozhestv. I”, Ufimskii matematicheskii zhurnal, 6:3 (2014), 98–111

[2] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[3] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[4] Tikhomirov V. M., “Vypuklyi analiz”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, Moskva, 1987, 5–101 | MR | Zbl

[5] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[6] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[8] Levin B. Ya., Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[9] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[10] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[11] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966

[12] Santalo L., Integralnaya geometriya i geometricheskie veroyatnosti, Nauka, M., 1983 | MR | Zbl

[13] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Dokl. AN SSSR, 302:2 (1988), 270–273 | MR

[14] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Matem. sbornik, 180:5 (1989), 706–719 | MR | Zbl

[15] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami vdol pryamoi”, Analysis Math., 17:3 (1991), 239–256 | DOI | MR | Zbl

[16] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, izdanie chetvertoe, dopolnennoe, RITs BashGU, Ufa, 2012

[17] Ransford T., Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[18] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[19] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl