On Fourier transformation of a class of entire functions
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 108-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a space of entire functions of several complex variables decaying fast on $\mathbb R^n$ and such that their growth along $i\mathbb R^n$ is majorized by means of a family of weight functions. Under certain assumptions for the weight functions we obtain an equivalent description of this space in terms of estimates for partial derivatives of the functions in $\mathbb R^n$ and prove a Paley–Wiener type theorem.
Keywords: Gelfand–Shilov spaces, entire functions, convex functions.
Mots-clés : Fourier transform
@article{UFA_2014_6_4_a8,
     author = {I. Kh. Musin and M. I. Musin},
     title = {On {Fourier} transformation of a~class of entire functions},
     journal = {Ufa mathematical journal},
     pages = {108--121},
     year = {2014},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a8/}
}
TY  - JOUR
AU  - I. Kh. Musin
AU  - M. I. Musin
TI  - On Fourier transformation of a class of entire functions
JO  - Ufa mathematical journal
PY  - 2014
SP  - 108
EP  - 121
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a8/
LA  - en
ID  - UFA_2014_6_4_a8
ER  - 
%0 Journal Article
%A I. Kh. Musin
%A M. I. Musin
%T On Fourier transformation of a class of entire functions
%J Ufa mathematical journal
%D 2014
%P 108-121
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a8/
%G en
%F UFA_2014_6_4_a8
I. Kh. Musin; M. I. Musin. On Fourier transformation of a class of entire functions. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 108-121. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a8/

[1] Gurevich B. L., “Novye prostranstva osnovnykh i obobschënnykh funktsii i problema Koshi dlya konechno-raznostnykh sistem”, DAN SSSR, 99:6 (1954), 893–896

[2] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii. Obobschennye funktsii, v. 2, Gos. izd-vo fiz.-mat. lit., M., 1958, 307 pp. | MR

[3] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii. Obobschennye funktsii, v. 3, Gos. izd-vo fiz.-mat. lit, M., 1958, 274 pp. | MR

[4] Chung J., Chung S.-Y., Kim D., “Characterizations of the Gelfand–Shilov spaces via Fourier transforms”, Proc. Amer. Math. Soc., 124:7 (1996), 2101–2108 | DOI | MR | Zbl

[5] Chung J., Chung S.-Y., Kim D., “Equivalence of the Gelfand–Shilov spaces”, Journal of Math. Anal. and Appl., 203 (1996), 828–839 | DOI | MR | Zbl

[6] Musin M. I., “O prostranstve tselykh funktsii, bystro ubyvayuschikh na veschestvennoi pryamoi”, Ufimsk. matem. zhurn., 4:1 (2012), 136–145

[7] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Gos. izd-vo fiz.-mat. lit., M., 1958, 271 pp. | MR

[8] Musin I. Kh., Popënov S. V., “O vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Ufimsk. matem. zhurn., 2:3 (2010), 54–62 | Zbl

[9] Napalkov V. V., Popënov S. V., “O preobrazovanii Laplasa na vesovom prostranstve Bergmana tselykh funktsii v $\mathbb C^n$”, Doklady RAN, 352:5 (1997), 595–597 | MR | Zbl

[10] Roberts A. W., Varberg D. E., Convex functions, Academic Press, New York–London, 1973, 300 pp. | MR | Zbl