Spectral properties of two particle Hamiltonian on one-dimensional lattice
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 99-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of two arbitrary quantum particles on a one-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T$ (where $\mathbb T$ is a one-dimensional torus). Depending on the particle interaction energy, we obtain conditions for existence of multiple eigenvalues below the essential spectrum of operator $h(k)$.
Keywords: two-particle Hamiltonian on one dimensional lattice, eigenvalue, multiple eigenvalue.
@article{UFA_2014_6_4_a7,
     author = {M. E. Muminov and A. M. Khurramov},
     title = {Spectral properties of two particle {Hamiltonian} on one-dimensional lattice},
     journal = {Ufa mathematical journal},
     pages = {99--107},
     year = {2014},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/}
}
TY  - JOUR
AU  - M. E. Muminov
AU  - A. M. Khurramov
TI  - Spectral properties of two particle Hamiltonian on one-dimensional lattice
JO  - Ufa mathematical journal
PY  - 2014
SP  - 99
EP  - 107
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/
LA  - en
ID  - UFA_2014_6_4_a7
ER  - 
%0 Journal Article
%A M. E. Muminov
%A A. M. Khurramov
%T Spectral properties of two particle Hamiltonian on one-dimensional lattice
%J Ufa mathematical journal
%D 2014
%P 99-107
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/
%G en
%F UFA_2014_6_4_a7
M. E. Muminov; A. M. Khurramov. Spectral properties of two particle Hamiltonian on one-dimensional lattice. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 99-107. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/

[1] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Trudy matem. ins-ta AN SSSR, 69, 1963, 122 pp. | MR | Zbl

[2] Mattis D. C., “The few-body problem on lattice”, Rew. mod. Phys., 58 (1986), 361–379 | DOI | MR

[3] Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I., “The threshold effects for the two-particle Hamiltonians”, Commun. Math. Phys., 262 (2006), 91–115 | DOI | MR | Zbl

[4] Lakshtanov E. L., Minlos R. A., “The spectrum of two-particle bound states of transfer matrices of Gibbs fields (fields on a two-dimensional lattice: adjacent levels)”, Funct. Anal. Appl., 39:1 (2005), 31–45 | DOI | MR | Zbl

[5] Faria da Veiga P. A., Ioriatti L., O'Carroll M., “Energy momentum spectrum of some two-particle lattice Schrödinger Hamiltonians”, Physical review E, 66:1 (2002), 6130 | MR

[6] Muminov M. E., “O polozhitelnosti dvukhchastichnogo gamiltoniana na reshetke”, Teor. Mat. Fizika, 153:3 (2007), 381–387 | DOI | MR | Zbl

[7] Muminov M. E., Khurramov A. M., “Spektralnye svoistva dvukhchastichnogo gamiltoniana na reshetke”, Teor. Mat. Fizika, 177:3 (2013), 482–496 | DOI | MR

[8] Rid M., Saimon B., Metody sovpemennoi matematicheskoi fiziki, v. 4, Analiz opepatopov, Mip, M., 1982