Spectral properties of two particle Hamiltonian on one-dimensional lattice
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 99-107
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of two arbitrary quantum particles on a one-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T$ (where $\mathbb T$ is a one-dimensional torus). Depending on the particle interaction energy, we obtain conditions for existence of multiple eigenvalues below the essential spectrum of operator $h(k)$.
Keywords:
two-particle Hamiltonian on one dimensional lattice, eigenvalue, multiple eigenvalue.
@article{UFA_2014_6_4_a7,
author = {M. E. Muminov and A. M. Khurramov},
title = {Spectral properties of two particle {Hamiltonian} on one-dimensional lattice},
journal = {Ufa mathematical journal},
pages = {99--107},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/}
}
TY - JOUR AU - M. E. Muminov AU - A. M. Khurramov TI - Spectral properties of two particle Hamiltonian on one-dimensional lattice JO - Ufa mathematical journal PY - 2014 SP - 99 EP - 107 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/ LA - en ID - UFA_2014_6_4_a7 ER -
M. E. Muminov; A. M. Khurramov. Spectral properties of two particle Hamiltonian on one-dimensional lattice. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 99-107. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/