Spectral properties of two particle Hamiltonian on one-dimensional lattice
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 99-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of two arbitrary quantum particles on a one-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T$ (where $\mathbb T$ is a one-dimensional torus). Depending on the particle interaction energy, we obtain conditions for existence of multiple eigenvalues below the essential spectrum of operator $h(k)$.
Keywords: two-particle Hamiltonian on one dimensional lattice, eigenvalue, multiple eigenvalue.
@article{UFA_2014_6_4_a7,
     author = {M. E. Muminov and A. M. Khurramov},
     title = {Spectral properties of two particle {Hamiltonian} on one-dimensional lattice},
     journal = {Ufa mathematical journal},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/}
}
TY  - JOUR
AU  - M. E. Muminov
AU  - A. M. Khurramov
TI  - Spectral properties of two particle Hamiltonian on one-dimensional lattice
JO  - Ufa mathematical journal
PY  - 2014
SP  - 99
EP  - 107
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/
LA  - en
ID  - UFA_2014_6_4_a7
ER  - 
%0 Journal Article
%A M. E. Muminov
%A A. M. Khurramov
%T Spectral properties of two particle Hamiltonian on one-dimensional lattice
%J Ufa mathematical journal
%D 2014
%P 99-107
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/
%G en
%F UFA_2014_6_4_a7
M. E. Muminov; A. M. Khurramov. Spectral properties of two particle Hamiltonian on one-dimensional lattice. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 99-107. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a7/