Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 81-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the global solvability of the initial-boundary value problems for the complete system of equations describing one-dimensional non-stationary flow of the viscous heat-conducting gas in time-increasing non-cylindrical domains. Local existence and uniqueness of these problems are proved in earlier articles by Kazhikhov A. V. and Kaliev I. A. This is why, the proof of the global in time existence and uniqueness theorem is connected with obtaining a priori estimates, in which the constant depend only on the data of the problem and the value of the time interval $T$, but do not depend on the period of existence of a local solution. The study is made in terms of Eulerian variables.
Keywords: Navier–Stokes equations system, heat-conducting gas, global solvability, time-increasing non-cylindrical domains.
@article{UFA_2014_6_4_a6,
     author = {I. A. Kaliev and A. A. Shukhardin and G. S. Sabitova},
     title = {Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains},
     journal = {Ufa mathematical journal},
     pages = {81--98},
     year = {2014},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/}
}
TY  - JOUR
AU  - I. A. Kaliev
AU  - A. A. Shukhardin
AU  - G. S. Sabitova
TI  - Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains
JO  - Ufa mathematical journal
PY  - 2014
SP  - 81
EP  - 98
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/
LA  - en
ID  - UFA_2014_6_4_a6
ER  - 
%0 Journal Article
%A I. A. Kaliev
%A A. A. Shukhardin
%A G. S. Sabitova
%T Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains
%J Ufa mathematical journal
%D 2014
%P 81-98
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/
%G en
%F UFA_2014_6_4_a6
I. A. Kaliev; A. A. Shukhardin; G. S. Sabitova. Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 81-98. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/

[1] Serrin J., “On the uniqueness of compressible fluid motion”, Arch. Rational Mech. Anal., 3:3 (1959), 271–288 | DOI | MR | Zbl

[2] Graffi D., “Il teorema di unicita nella dinamica dei fluidi compressibli”, J. Rat. Mech. Anal., 2 (1953), 99–106 | MR | Zbl

[3] Nash J., “Le probleme de Cauchy pour les equations differentielles d'un fluide general”, Bull. Soc. Math. France, 90 (1962), 487–497 | MR | Zbl

[4] Itaya N., “The existence and unicueness of the solution of the equations describing compressible viscous fluid flow”, Proc. Japan Acad., 46:4 (1970), 379–382 | DOI | MR | Zbl

[5] Volpert A. I., Khudyaev S. I., “O zadache Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Mat. sbornik, 87(129):4 (1972), 504–528 | MR | Zbl

[6] Solonnikov V. A., “O razreshimosti nachalno-kraevoi zadachi dlya uravnenii dvizheniya vyazkoi szhimaemoi zhidkosti”, Issledovaniya po lineinym operatoram i teorii funktsii. 6, Zap. nauch. seminarov LOMI AN SSSR, 56, Nauka, L., 1976, 128–142 | MR | Zbl

[7] Tani A., “On the first initial-boundary value problem of compressible viscous fluid motion”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 13:1 (1977), 193–253 | DOI | Zbl

[8] Kanel Ya. I., “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Differentsialnye uravneniya, 4:4 (1968), 721–734 | MR | Zbl

[9] Itaya N., “On the temporally global problem of the generalized Burgers equation”, J. Math. Kyoto Univ., 14:1 (1974), 129–177 | MR | Zbl

[10] Itaya N., “A servey on the generalized Burger's equation with a pressure model term”, J. Math. Kyoto Univ., 16:1 (1976), 223–240 | MR | Zbl

[11] Tani A., “On the first initial-boundary value problem of the generalized Burgers equation”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 10:1 (1974), 209–233 | DOI | MR | Zbl

[12] Kazhikhov A. V., “O globalnoi razreshimosti odnomernykh kraevykh zadach dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 24, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1976, 45–61

[13] Kazhikhov A. V., “Nekotorye voprosy teorii uravnenii Nave–Stoksa szhimaemoi zhidkosti”, Dinamika sploshnoi sredy. Sb. nauch. tr., 38, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1979, 33–47 | MR

[14] Kazhikhov A. V., “K teorii kraevykh zadach dlya uravnenii odnomernogo nestatsionarnogo dvizheniya vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 50, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1981, 37–62 | MR

[15] Kazhikhov A. V., “O zadache Koshi dlya uravnenii vyazkogo gaza”, Sib. mat. zhurn., 23:1 (1982), 60–64 | MR | Zbl

[16] Kazhikhov A. V., Shelukhin V. V., “Odnoznachnaya razreshimost “v tselom” po vremeni nachalno-kraevykh zadach dlya odnomernykh uravnenii vyazkogo gaza”, Prikl. matematika i mekhanika, 41:2 (1977), 282–291 | MR

[17] Shelukhin V. V., “Periodicheskie techeniya vyazkogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 42, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1979, 80–102 | MR

[18] Shelukhin V. V., “Suschestvovanie periodicheskikh reshenii obobschënnoi sistemy Byurgersa”, Prikl. matematika i mekhanika, 43:6 (1979), 992–997 | MR | Zbl

[19] Shelukhin V. V., “Ogranichennye, pochti periodicheskie resheniya uravnenii vyazkogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 44, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1980, 147–162 | MR

[20] Belov S. Ya., “Razreshimost “v tselom” zadachi protekaniya dlya uravnenii Byurgersa szhimaemoi zhidkosti”, Dinamika sploshnoi sredy. Sb. nauch. tr., 50, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1981, 3–14 | MR

[21] Vaigant V. A., “Neodnorodnye granichnye zadachi dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 97, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1990, 3–21 | MR

[22] Vaigant V. A., Problema suschestvovaniya globalnykh reshenii uravnenii Nave–Stoksa szhimaemykh sploshnykh sred, Diss. dokt. fiz.-mat. nauk: 01.01.02, Barnaul Altaiskii gos. un-t, 1998

[23] Kazhikhov A. V., Kaliev I. A., Korrektnost odnoi modeli fazovogo perekhoda gaz–tverdoe telo, Prepr. No 43, Min. OPO RF. NGU, NII Diskretnoi matematiki i informatiki, Novosibirsk, 1999, 32 pp.

[24] Kaliev I. A., Kazhikhov A. V., “Well-posedness of a gas-solid phase transition problem”, J. Math. Fluid Mech., 1:3 (1999), 282–308 | DOI | MR | Zbl

[25] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 319 pp. | Zbl

[26] Kaliev I. A., Podkuiko M. S., “Ob odnoi granichnoi zadache dlya uravnenii vyazkogo teploprovodnogo gaza v netsilindricheskikh ubyvayuschikh so vremenem oblastyakh”, Differentsialnye uravneniya, 42:10 (2006), 1356–1374 | MR | Zbl

[27] Kaliev I. A., Podkuiko M. S., “Nonhomogeneous Boundary Value Problems for Equations of Viscous Heat-Conducting Gas in Time-Decreazing Non-Rectangular Domains”, J. Math. Fluid Mech., 10:2 (2008), 176–202 | DOI | MR | Zbl