@article{UFA_2014_6_4_a6,
author = {I. A. Kaliev and A. A. Shukhardin and G. S. Sabitova},
title = {Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains},
journal = {Ufa mathematical journal},
pages = {81--98},
year = {2014},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/}
}
TY - JOUR AU - I. A. Kaliev AU - A. A. Shukhardin AU - G. S. Sabitova TI - Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains JO - Ufa mathematical journal PY - 2014 SP - 81 EP - 98 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/ LA - en ID - UFA_2014_6_4_a6 ER -
%0 Journal Article %A I. A. Kaliev %A A. A. Shukhardin %A G. S. Sabitova %T Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains %J Ufa mathematical journal %D 2014 %P 81-98 %V 6 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/ %G en %F UFA_2014_6_4_a6
I. A. Kaliev; A. A. Shukhardin; G. S. Sabitova. Boundary value problems for equations of viscous heat-conducting gas in time-increasing non-cylindrical domains. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 81-98. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a6/
[1] Serrin J., “On the uniqueness of compressible fluid motion”, Arch. Rational Mech. Anal., 3:3 (1959), 271–288 | DOI | MR | Zbl
[2] Graffi D., “Il teorema di unicita nella dinamica dei fluidi compressibli”, J. Rat. Mech. Anal., 2 (1953), 99–106 | MR | Zbl
[3] Nash J., “Le probleme de Cauchy pour les equations differentielles d'un fluide general”, Bull. Soc. Math. France, 90 (1962), 487–497 | MR | Zbl
[4] Itaya N., “The existence and unicueness of the solution of the equations describing compressible viscous fluid flow”, Proc. Japan Acad., 46:4 (1970), 379–382 | DOI | MR | Zbl
[5] Volpert A. I., Khudyaev S. I., “O zadache Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Mat. sbornik, 87(129):4 (1972), 504–528 | MR | Zbl
[6] Solonnikov V. A., “O razreshimosti nachalno-kraevoi zadachi dlya uravnenii dvizheniya vyazkoi szhimaemoi zhidkosti”, Issledovaniya po lineinym operatoram i teorii funktsii. 6, Zap. nauch. seminarov LOMI AN SSSR, 56, Nauka, L., 1976, 128–142 | MR | Zbl
[7] Tani A., “On the first initial-boundary value problem of compressible viscous fluid motion”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 13:1 (1977), 193–253 | DOI | Zbl
[8] Kanel Ya. I., “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Differentsialnye uravneniya, 4:4 (1968), 721–734 | MR | Zbl
[9] Itaya N., “On the temporally global problem of the generalized Burgers equation”, J. Math. Kyoto Univ., 14:1 (1974), 129–177 | MR | Zbl
[10] Itaya N., “A servey on the generalized Burger's equation with a pressure model term”, J. Math. Kyoto Univ., 16:1 (1976), 223–240 | MR | Zbl
[11] Tani A., “On the first initial-boundary value problem of the generalized Burgers equation”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 10:1 (1974), 209–233 | DOI | MR | Zbl
[12] Kazhikhov A. V., “O globalnoi razreshimosti odnomernykh kraevykh zadach dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 24, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1976, 45–61
[13] Kazhikhov A. V., “Nekotorye voprosy teorii uravnenii Nave–Stoksa szhimaemoi zhidkosti”, Dinamika sploshnoi sredy. Sb. nauch. tr., 38, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1979, 33–47 | MR
[14] Kazhikhov A. V., “K teorii kraevykh zadach dlya uravnenii odnomernogo nestatsionarnogo dvizheniya vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 50, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1981, 37–62 | MR
[15] Kazhikhov A. V., “O zadache Koshi dlya uravnenii vyazkogo gaza”, Sib. mat. zhurn., 23:1 (1982), 60–64 | MR | Zbl
[16] Kazhikhov A. V., Shelukhin V. V., “Odnoznachnaya razreshimost “v tselom” po vremeni nachalno-kraevykh zadach dlya odnomernykh uravnenii vyazkogo gaza”, Prikl. matematika i mekhanika, 41:2 (1977), 282–291 | MR
[17] Shelukhin V. V., “Periodicheskie techeniya vyazkogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 42, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1979, 80–102 | MR
[18] Shelukhin V. V., “Suschestvovanie periodicheskikh reshenii obobschënnoi sistemy Byurgersa”, Prikl. matematika i mekhanika, 43:6 (1979), 992–997 | MR | Zbl
[19] Shelukhin V. V., “Ogranichennye, pochti periodicheskie resheniya uravnenii vyazkogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 44, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1980, 147–162 | MR
[20] Belov S. Ya., “Razreshimost “v tselom” zadachi protekaniya dlya uravnenii Byurgersa szhimaemoi zhidkosti”, Dinamika sploshnoi sredy. Sb. nauch. tr., 50, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1981, 3–14 | MR
[21] Vaigant V. A., “Neodnorodnye granichnye zadachi dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Sb. nauch. tr., 97, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, 1990, 3–21 | MR
[22] Vaigant V. A., Problema suschestvovaniya globalnykh reshenii uravnenii Nave–Stoksa szhimaemykh sploshnykh sred, Diss. dokt. fiz.-mat. nauk: 01.01.02, Barnaul Altaiskii gos. un-t, 1998
[23] Kazhikhov A. V., Kaliev I. A., Korrektnost odnoi modeli fazovogo perekhoda gaz–tverdoe telo, Prepr. No 43, Min. OPO RF. NGU, NII Diskretnoi matematiki i informatiki, Novosibirsk, 1999, 32 pp.
[24] Kaliev I. A., Kazhikhov A. V., “Well-posedness of a gas-solid phase transition problem”, J. Math. Fluid Mech., 1:3 (1999), 282–308 | DOI | MR | Zbl
[25] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 319 pp. | Zbl
[26] Kaliev I. A., Podkuiko M. S., “Ob odnoi granichnoi zadache dlya uravnenii vyazkogo teploprovodnogo gaza v netsilindricheskikh ubyvayuschikh so vremenem oblastyakh”, Differentsialnye uravneniya, 42:10 (2006), 1356–1374 | MR | Zbl
[27] Kaliev I. A., Podkuiko M. S., “Nonhomogeneous Boundary Value Problems for Equations of Viscous Heat-Conducting Gas in Time-Decreazing Non-Rectangular Domains”, J. Math. Fluid Mech., 10:2 (2008), 176–202 | DOI | MR | Zbl