Generalized solutions and Euler–Darboux transformations
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 60-67
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce Euler–Darboux transformation for non-homogeneous differential equations with the right-hand side being a generalized function. As an example, we construct the fundamental solutions for Klein–Gordon–Fock and Schrödinger equations with variable coefficients describing a particle in external scalar field.
Keywords:
Klein–Gordon–Fock equation, Schrödinger equation, fundamental solution.
Mots-clés : Euler–Darboux transformation
Mots-clés : Euler–Darboux transformation
@article{UFA_2014_6_4_a4,
author = {I. V. Verevkin},
title = {Generalized solutions and {Euler{\textendash}Darboux} transformations},
journal = {Ufa mathematical journal},
pages = {60--67},
year = {2014},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a4/}
}
I. V. Verevkin. Generalized solutions and Euler–Darboux transformations. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 60-67. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a4/
[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[2] Kaptsov O. V., “Ekvivalentnost lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi i preobrazovaniya Eilera–Darbu”, Vychislitelnye tekhnologii, 12:4 (2007), 59–72 | Zbl
[3] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTI, Kharkov, 1939
[4] Bogolyubov N. N., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR