Mots-clés : impulse action.
@article{UFA_2014_6_4_a3,
author = {V. M. Bruk},
title = {Invertibility of linear relations generated by integral equation with operator measures},
journal = {Ufa mathematical journal},
pages = {48--59},
year = {2014},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a3/}
}
V. M. Bruk. Invertibility of linear relations generated by integral equation with operator measures. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 48-59. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a3/
[1] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Sturm–Liouville oscillation theory for impulsive problems”, Russian Mathematics Surveys, 63:1 (2008), 109–153 | DOI | DOI | MR | Zbl
[2] Savchuk A. M., Shkalikov A. A., “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl
[3] Bruk V. M., “Invertible linear relations generated by an integral equation with Nevanlinna measure”, Russian Mathematics, 57:2 (2013), 13–24 | DOI | MR | Zbl
[4] Baskakov A. G., “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izvestiya: Mathematics, 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl
[5] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Mathematical Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[6] Bruk V. M., “Ob obratimykh suzheniyakh zamknutykh operatorov v banakhovykh prostranstvakh”, Funkts. analiz, 28, Ulyanovsk, 1988, 17–22 | MR | Zbl
[7] Bruk V. M., “On linear relations generated by Nonnegative operator function and degenerate elliptic differential-operator expression”, J. of Math. Physics, Analysis, Geometry, 5:2 (2009), 123–144 | MR | Zbl
[8] Shin D., “O kvazidifferentsialnykh operatorakh v gilbertovom prostranstve”, Matem. sbornik, 13(55):1 (1943), 39–70 | MR | Zbl
[9] Zettl A., “Formally self-adjoint quasi-differential operators”, Rocky Mountain J. Math., 5:3 (1975), 453–474 | DOI | MR | Zbl
[10] Samoilenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa Shkola, Kiev, 1987, 288 pp.
[11] Didenko V. B., “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izvestiya: Mathematics, 77:1 (2013), 3–19 | DOI | DOI | MR | Zbl
[12] Rofe-Beketov F. S., “Selfadjoint extensions of differential operators in a space of vector functions”, Soviet. Math. Dokl., 10:1 (1969), 188–192 | MR | Zbl
[13] Berezanski Yu. M., Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968, 822 pp. | MR | MR | Zbl | Zbl
[14] Bruk V. M., “On the characteristic operator of an integral equation with a nevanlinna measure in the infinite-dimensional case”, J. of Math. Physics, Analysis, Geometry, 10:2 (2014), 163–188 | MR | Zbl
[15] Bruk V. M., “On invertible restrictions of relations generated by a differential expression and by a nonnegative operator function”, Math. Notes, 82:5 (2007), 583–595 | DOI | DOI | MR | Zbl
[16] Didenko V. B., “On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation”, Math. Notes, 89:2 (2011), 224–237 | DOI | DOI | MR | Zbl
[17] Schaefer H., Topological Vector Spaces, The Macmillan Company, New York; Collier-Macmillan Limited, London, 1966, 306 pp. (English) ; Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971, 360 pp. | MR | Zbl | MR