Existence of solution for parabolic equation with non-power nonlinearities
Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 31-47
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the first mixed problem for a class of parabolic equation with double non-exponential nonlinearities in a cylindrical domain $D=(t>0)\times\Omega$. By Galerkin's approximations we prove the existence of strong solutions in Sobolev–Orlich space.
Keywords:
$N$-functions, Sobolev–Orlich spaces.
Mots-clés : parabolic equation, existence of solution
Mots-clés : parabolic equation, existence of solution
@article{UFA_2014_6_4_a2,
author = {E. R. Andriyanova and F. Kh. Mukminov},
title = {Existence of solution for parabolic equation with non-power nonlinearities},
journal = {Ufa mathematical journal},
pages = {31--47},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a2/}
}
TY - JOUR AU - E. R. Andriyanova AU - F. Kh. Mukminov TI - Existence of solution for parabolic equation with non-power nonlinearities JO - Ufa mathematical journal PY - 2014 SP - 31 EP - 47 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a2/ LA - en ID - UFA_2014_6_4_a2 ER -
E. R. Andriyanova; F. Kh. Mukminov. Existence of solution for parabolic equation with non-power nonlinearities. Ufa mathematical journal, Tome 6 (2014) no. 4, pp. 31-47. http://geodesic.mathdoc.fr/item/UFA_2014_6_4_a2/