Behavior of solutions to Gauss--Bieberbach--Rademacher  equation on plane
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 85-94
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the asymptotic behavior at infinity of solutions to Gauss–Bierbach–Rademacher equation $\Delta u=e^u$ in the domain exterior to a circle on the plane. We establish that the leading term of the asymptotics is a logarithmic function tending to $-\infty$. We also find the next-to-leading term for various values of the coefficient in the leading term.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
semilinear elliptic equations, asymptotic behavior of solutions.
Mots-clés : Gauss–Bieberbach–Rademacher equation
                    
                  
                
                
                Mots-clés : Gauss–Bieberbach–Rademacher equation
@article{UFA_2014_6_3_a5,
     author = {A. V. Neklyudov},
     title = {Behavior of solutions to {Gauss--Bieberbach--Rademacher}  equation on plane},
     journal = {Ufa mathematical journal},
     pages = {85--94},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a5/}
}
                      
                      
                    A. V. Neklyudov. Behavior of solutions to Gauss--Bieberbach--Rademacher equation on plane. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 85-94. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a5/
