Mots-clés : Gauss–Bieberbach–Rademacher equation
@article{UFA_2014_6_3_a5,
author = {A. V. Neklyudov},
title = {Behavior of solutions to {Gauss{\textendash}Bieberbach{\textendash}Rademacher} equation on plane},
journal = {Ufa mathematical journal},
pages = {85--94},
year = {2014},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a5/}
}
A. V. Neklyudov. Behavior of solutions to Gauss–Bieberbach–Rademacher equation on plane. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 85-94. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a5/
[1] Vekua I. N., “O nekotorykh svoistvakh reshenii uravneniya Gaussa”, Trudy Matem. in-ta im. V. A. Steklova, 64, 1961, 5–8 | MR | Zbl
[2] L. Bieberbach, “$\Delta u=e^u$ und die automorphen Funktionen”, Math. Ann., 77 (1916), 173–212 | DOI | MR
[3] H. Rademacher, Die Differential- und Integralgleichungen der Mechanik und Physik, Vieweg, Braunschweig, 1935
[4] Oleinik O. A., “Ob uravnenii $\Delta u+k(x)e^u=0$”, UMN, 33:2 (1978), 203–204 | MR | Zbl
[5] J. N. Flavin, R. J. Knops, L. E. Payne, “Asymptotic behavior of solutions to semi-linear elliptic equations on the half-cylinder”, Z. Angew. Math. Phys., 43:3 (1992), 405–421 | DOI | MR | Zbl
[6] H. Usami, “Note on the inequality $\Delta u\ge k(x)e^u$ in $\mathbb R^n$”, Hiroshima Math. J., 18 (1988), 661–668 | MR | Zbl
[7] Kuo-Shung Cheng, Chang-Shou Lin, “On the Conformal Gaussian Curvature Equation in $\mathbb R^2$”, Journal of differential equations, 146 (1998), 226–250 | DOI | MR | Zbl
[8] Neklyudov A. V., “Ob otsutstvii globalnykh reshenii uravneniya Gaussa i reshenii vo vneshnikh oblastyakh”, Izv. vuzov. Matem., 2014, no. 1, 55–60 | Zbl
[9] Kondratev V. A., Oleinik O. A., “Ob asimptotike reshenii nelineinykh ellipticheskikh uravnenii”, UMN, 48:4 (1993), 184–185
[10] O. A. Oleinik, Some Asymptotic Problems in the Theory of Partial Differential Equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[11] Nasrullaev A. I., “Ob asimptotike reshenii zadachi Neimana dlya uravneniya $\Delta u-e^u=0$ v polubeskonechnom tsilindre”, UMN, 50:3 (1995), 161–162 | MR | Zbl
[12] Neklyudov A. V., “Povedenie reshenii polulineinogo ellipticheskogo uravneniya vtorogo poryadka vida $Lu=e^u$ v beskonechnom tsilindre”, Matem. zametki, 85:3 (2009), 408–420 | DOI | MR | Zbl
[13] Neklyudov A. V., “Povedenie reshenii nelineinogo bigarmonicheskogo uravneniya v neogranichennoi oblasti”, Matem. zametki, 95:2 (2014), 248–256 | DOI
[14] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112(154):4 (1980), 588–610 | MR | Zbl
[15] O. A. Oleinik, G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Ration. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl
[16] Neklyudov A. V., “O zadache Neimana dlya divergentnykh ellipticheskikh uravnenii vysokogo poryadka v neogranichennoi oblasti, blizkoi k tsilindru”, Tr. sem. im. I. G. Petrovskogo, 16, 1991, 191–217
[17] Neklyudov A. V., “O resheniyakh tretei kraevoi zadachi dlya uravneniya Laplasa v polubeskonechnom tsilindre”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 48–58
[18] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl
[19] Kametaka I., Oleinik O. A., “Ob asimptoticheskikh svoistvakh i neobkhodimykh usloviyakh suschestvovaniya reshenii nelineinykh ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 107(149):4 (1978), 572–600 | MR | Zbl