Singular integral operators on a manifold with a distinguished submanifold
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 35-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a compact manifold without boundary and $X^0$ its smooth submanifold of codimension one. In this work we introduce classes of integral operators on $X$ with kernels $K_A(x,y)$, being smooth functions for $x\notin X^0$ and $y\notin X^0$, and admitting an asymptotic expansion of certain type, if $x$ or $y$ approaches $X^0$. For operators of these classes we prove theorems about action in spaces of conormal functions and composition. We show that the trace functional can be extended to a regularized trace functional $\operatorname{r-Tr}$ defined on some algebra $\mathcal K(X,X^0)$ of singular integral operators described above. We prove a formula for the regularized trace of the commutator of operators from this class in terms of associated operators on $X^0$. The proofs are based on theorems about pull-back and push-forward of conormal functions under maps of manifolds with distinguished codimension one submanifolds.
Keywords: manifolds, singular integral operators, conormal functions, regularized trace, pull-back, push-forward.
@article{UFA_2014_6_3_a3,
     author = {Yu. A. Kordyukov and V. A. Pavlenko},
     title = {Singular integral operators on a~manifold with a~distinguished submanifold},
     journal = {Ufa mathematical journal},
     pages = {35--68},
     year = {2014},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
AU  - V. A. Pavlenko
TI  - Singular integral operators on a manifold with a distinguished submanifold
JO  - Ufa mathematical journal
PY  - 2014
SP  - 35
EP  - 68
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/
LA  - en
ID  - UFA_2014_6_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%A V. A. Pavlenko
%T Singular integral operators on a manifold with a distinguished submanifold
%J Ufa mathematical journal
%D 2014
%P 35-68
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/
%G en
%F UFA_2014_6_3_a3
Yu. A. Kordyukov; V. A. Pavlenko. Singular integral operators on a manifold with a distinguished submanifold. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 35-68. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/

[1] J. Álvarez López, Yu. A. Kordyukov, “Distributional Betti numbers of transitive foliations of codimension one”, Foliations: Geometry and Dynamics (Warsaw, 2000), World Sci. Publishing, River Edge, NJ, 2002, 159–183 | MR | Zbl

[2] Sobolev S. L., “Ob odnoi kraevoi zadache dlya poligarmonicheskikh uravnenii”, Matem. sb., 2(44):3 (1937), 465–499 | Zbl

[3] Sternin B. Yu., “Ellipticheskie i parabolicheskie zadachi na mnogoobraziyakh s granitsei, sostoyaschei iz komponent razlichnoi razmernosti”, Tr. MMO, 15, URSS, M., 1966, 346–382 | MR | Zbl

[4] Sternin B. Yu., Shatalov V. E., “Otnositelnaya ellipticheskaya teoriya i zadacha Soboleva”, Matem. sb., 187:11 (1996), 115–144 | DOI | MR | Zbl

[5] Sternin B. Yu., “Otnositelnaya ellipticheskaya teoriya i problema S. L. Soboleva”, Doklady AN SSSR, 230:2 (1976), 287–290 | MR | Zbl

[6] Sternin B. Yu., “Problemy tipa S. L. Soboleva v sluchae podmnogoobrazii s mnogomernymi osobennostyami”, Doklady AN SSSR, 189 (1969), 732–735 | MR | Zbl

[7] Sternin B. Yu., “Ellipticheskie morfizmy (osnascheniya ellipticheskikh operatorov) dlya podmnogoobrazii s osobennostyami”, Doklady AN SSSR, 200 (1971), 45–48 | MR | Zbl

[8] Sternin B. Yu., Ellipticheskaya teoriya na kompaktnykh mnogoobraziyakh s osobennostyami, MIEM, M., 1974, 108 pp. | MR

[9] Sternin B. Yu., Savin A. Yu., “Ellipticheskie translyatory na mnogoobraziyakh s mnogomernymi osobennostyami”, Differentsialnye uravneniya, 49:4 (2013), 513–527 | MR | Zbl

[10] Sternin B. Yu., Savin A. Yu., “Indeks zadach Soboleva na mnogoobraziyakh s mnogomernymi osobennostyami”, Differentsialnye uravneniya, 50:2 (2014), 229–241 | DOI | MR | Zbl

[11] R. B. Melrose, “Pseudodifferential operators, corners and singular limits”, Proceedings of the International Congress of Mathematicians (Kyoto, 1990), v. I, II, Math. Soc. Japan, Tokyo, 1991, 217–234 | MR | Zbl

[12] R. B. Melrose, “Calculus of conormal distributions on manifolds with corners”, Internat. Math. Res. Notices, 1992:3 (1992), 51–61 | DOI | MR | Zbl

[13] R. B. Melrose, The Atiyah–Patodi–Singer index theorem, Research Notes in Mathematics, 4, A K Peters, Ltd., Wellesley, MA, 1993 | MR | Zbl

[14] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “Nekommutativnaya geometriya i klassifikatsiya ellipticheskikh operatorov”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 29, RUDN, M., 2008, 131–164 | MR

[15] D. Grieser, “Basics of the b-calculus”, Approaches to singular analysis (Berlin, 1999), Oper. Theory Adv. Appl., 125, Birkhauser, Basel, 2001, 30–84 | MR | Zbl

[16] V. E. Nazaikinskii, A. Yu. Savin, B. W. Schulze, B. Yu. Sternin, Elliptic theory on singular manifolds, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl