Singular integral operators on a~manifold with a~distinguished submanifold
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 35-68
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a compact manifold without boundary and $X^0$ its smooth submanifold of codimension one. In this work we introduce classes of integral operators on $X$ with kernels $K_A(x,y)$, being smooth functions for $x\notin X^0$ and $y\notin X^0$, and admitting an asymptotic expansion of certain type, if $x$ or $y$ approaches $X^0$. For operators of these classes we prove theorems about action in spaces of conormal functions and composition. We show that the trace functional can be extended to a regularized trace functional $\operatorname{r-Tr}$ defined on some algebra $\mathcal K(X,X^0)$ of singular integral operators described above. We prove a formula for the regularized trace of the commutator of operators from this class in terms of associated operators on $X^0$. The proofs are based on theorems about pull-back and push-forward of conormal functions under maps of manifolds with distinguished codimension one submanifolds.
Keywords:
manifolds, singular integral operators, conormal functions, regularized trace, pull-back, push-forward.
@article{UFA_2014_6_3_a3,
author = {Yu. A. Kordyukov and V. A. Pavlenko},
title = {Singular integral operators on a~manifold with a~distinguished submanifold},
journal = {Ufa mathematical journal},
pages = {35--68},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/}
}
TY - JOUR AU - Yu. A. Kordyukov AU - V. A. Pavlenko TI - Singular integral operators on a~manifold with a~distinguished submanifold JO - Ufa mathematical journal PY - 2014 SP - 35 EP - 68 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/ LA - en ID - UFA_2014_6_3_a3 ER -
Yu. A. Kordyukov; V. A. Pavlenko. Singular integral operators on a~manifold with a~distinguished submanifold. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 35-68. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a3/