Asymptotics for eigenvalues of Sturm--Liouville operator with periodic boundary conditions
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 28-34
Voir la notice de l'article provenant de la source Math-Net.Ru
We employ the similar operators method for studying the spectral properties of the Sturm–Liouville operator generated by the differential expression $l(y)=-y''-vy$ with a complex potential $v$ and subject to periodic boundary conditions $y(0)=y(2\pi)$, $y'(0)=y'(2\pi)$. We obtain the results on the asymptotics for the spectrum of the operator.
Keywords:
similar operators method, Sturm–Liouville operator, the spectrum of operator, asymptotics for the spectrum.
@article{UFA_2014_6_3_a2,
author = {A. V. Karpikova},
title = {Asymptotics for eigenvalues of {Sturm--Liouville} operator with periodic boundary conditions},
journal = {Ufa mathematical journal},
pages = {28--34},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a2/}
}
A. V. Karpikova. Asymptotics for eigenvalues of Sturm--Liouville operator with periodic boundary conditions. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 28-34. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a2/