Asymptotics for eigenvalues of Sturm–Liouville operator with periodic boundary conditions
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 28-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We employ the similar operators method for studying the spectral properties of the Sturm–Liouville operator generated by the differential expression $l(y)=-y''-vy$ with a complex potential $v$ and subject to periodic boundary conditions $y(0)=y(2\pi)$, $y'(0)=y'(2\pi)$. We obtain the results on the asymptotics for the spectrum of the operator.
Keywords: similar operators method, Sturm–Liouville operator, the spectrum of operator, asymptotics for the spectrum.
@article{UFA_2014_6_3_a2,
     author = {A. V. Karpikova},
     title = {Asymptotics for eigenvalues of {Sturm{\textendash}Liouville} operator with periodic boundary conditions},
     journal = {Ufa mathematical journal},
     pages = {28--34},
     year = {2014},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a2/}
}
TY  - JOUR
AU  - A. V. Karpikova
TI  - Asymptotics for eigenvalues of Sturm–Liouville operator with periodic boundary conditions
JO  - Ufa mathematical journal
PY  - 2014
SP  - 28
EP  - 34
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a2/
LA  - en
ID  - UFA_2014_6_3_a2
ER  - 
%0 Journal Article
%A A. V. Karpikova
%T Asymptotics for eigenvalues of Sturm–Liouville operator with periodic boundary conditions
%J Ufa mathematical journal
%D 2014
%P 28-34
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a2/
%G en
%F UFA_2014_6_3_a2
A. V. Karpikova. Asymptotics for eigenvalues of Sturm–Liouville operator with periodic boundary conditions. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 28-34. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a2/

[1] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, Izd-vo Voronezh. gos. un-ta, Voronezh, 1987, 165 pp. | MR | Zbl

[2] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR | Zbl

[3] Baskakov A. G., “Spektralnyi analiz vozmuschennykh nekvaziperiodicheskikh i spektralnykh operatorov”, Izv. RAN. Ser. matem., 58:4 (1994), 3–32 | MR | Zbl

[4] Baskakov A. G., “Spektralnyi analiz integro-differentsialnykh operatorov s nelokalnymi kraevymi usloviyami”, Differents. uravneniya, 24:8 (1988), 1424–1433 | MR | Zbl

[5] Baskakov A. G., “Teorema o rasscheplenii operatora i nekotorye smezhnye voprosy analiticheskoi teorii vozmuschenii”, Izvestiya AN SSSR. Ser. matem., 50:3 (1986), 435–457 | MR | Zbl

[6] Baskakov A. G., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izvestiya RAN. Ser. matem., 75:3 (2011), 3–28 | DOI | MR | Zbl

[7] F. Gesztesy, V. Tkachenko, “A criterion for Hill operators to be spectral operators of scalar type”, Journal d'Analyse Mathe'matique, 107 (2009), 287–353 | DOI | MR | Zbl

[8] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauka, M., 1977, 330 pp. | MR

[9] Gokhberg I. Ts., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR