On A. F. Leont'ev's interpolating function
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce and study an abstract version of an interpolating functional. It is defined by means of Pommiez operator acting in an countable inductive limit of weighted Fréchet spaces of entire functions and of an entire function of two complex variables. The properties of the corresponding Pommiez operator are studied. The A. F. Leont'ev's interpolating function used widely in the theory of exponentional series and convolution operators and as well as the interpolating functional applied earlier for solving the problem on the existence of a continuous linear right inverse to the operator of representation of analytic functions on a bounded convex domain in $\mathrm C$ by quasipolynomial series are partial cases of the introduced interpolating functional.
Keywords: A. F. Leont'ev's interpolating function, interpolating functional, Pommiez operator.
@article{UFA_2014_6_3_a1,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On {A.} {F.~Leont'ev's} interpolating function},
     journal = {Ufa mathematical journal},
     pages = {17--27},
     year = {2014},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a1/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On A. F. Leont'ev's interpolating function
JO  - Ufa mathematical journal
PY  - 2014
SP  - 17
EP  - 27
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a1/
LA  - en
ID  - UFA_2014_6_3_a1
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On A. F. Leont'ev's interpolating function
%J Ufa mathematical journal
%D 2014
%P 17-27
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a1/
%G en
%F UFA_2014_6_3_a1
O. A. Ivanova; S. N. Melikhov. On A. F. Leont'ev's interpolating function. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 17-27. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a1/

[1] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR | Zbl

[2] Melikhov S. N., “Prodolzhenie tselykh funktsii vpolne regulyarnogo rosta i pravyi obratnyi dlya operatora predstavleniya analiticheskikh funktsii ryadami kvazipolinomov”, Matem. sb., 191:7 (2000), 105–128 | DOI | MR | Zbl

[3] Ivanova O. A., Melikhov S. N., “O predstavlenii analiticheskikh funktsii ryadami iz kvazimonomov”, Issledovaniya po sovremennomu analizu i matematicheskomu modelirovaniyu, izd-vo VNTs RAN i RSO-A, Vladikavkaz, 2008, 30–37

[4] S. N. Melikhov, S. Momm, “On the expansions of analytic functions on convex locally closed sets in exponential series”, Vladikavk. matem. zhurn., 13:1 (2011), 44–58 | MR | Zbl

[5] Ivanova O. A., Melikhov S. N., “O formulakh dlya koeffitsientov ryadov po funktsiyam Mittag-Lefflera dlya analiticheskikh funktsii”, Issledovaniya po matematicheskomu analizu, Matem. forum. Itogi nauki. Yug Rossii, 8, Ch. 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 251–260

[6] S. N. Melikhov, “Generalized Fourier expansions for distributions and ultradistributions”, Rev. Mat. Compl., 12:2 (1999), 349–379 | MR | Zbl

[7] M. Pommies, “Sur les restes successifs des séries de Taylor”, Ann. Fac. Sci. Univ. Toulouse, 24:4 (1960), 77–165 | DOI | MR

[8] Korobeinik Yu. F., “K voprosu o razlozhenii analiticheskikh funktsii v ryady po ratsionalnym funktsiyam”, Matem. zametki, 31:5 (1982), 723–737 | MR | Zbl

[9] Linchuk S. S., Nagnibida N. I., “Ob ekvivalentnosti operatorov Pomme v prostranstve analiticheskikh v kruge funktsii”, Sibirskii matem. zhurn., 31:3 (1990), 507–513 | MR

[10] I. N. Dimovski, V. Z. Hristov, “Commutants of the Pommiez operator”, Int. J. Math. and Math. Sci., 2005:8 (2005), 1239–1251 | DOI | MR | Zbl

[11] Sherstyukov V. B., “Netrivialnye razlozheniya nulya i predstavlenie analiticheskikh funktsii ryadami prostykh drobei”, Sib. matem. zhurn., 48:2 (2007), 458–473 | MR | Zbl

[12] Yu. S. Linchuk, “Description of the generalized eigenvalues and eigenvectors of some classical operators”, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 2013, no. 2, 25–29 (Ukrainian, English summary) | Zbl

[13] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969, 1072 pp.

[14] Robertson A. P., Robertson V. D., Topologicheskie vektornye prostranstva, Mir, M., 1967, 257 pp. | MR | Zbl

[15] Shabat B. V., Vvedenie v kompleksnyi analiz, Chast 2, Nauka, M., 1985, 464 pp. | MR

[16] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968, 279 pp. | MR

[17] S. N. Melikhov, S. Momm, “Analytic solutions of convolution equations on convex sets with obstacle in the boundary”, Math. Scand., 86 (2000), 293–319 | MR | Zbl

[18] Melikhov S. N., Momm Z., “O svoistve vnutr-prodolzhaemosti predstavlyayuschikh sistem eksponent na vypuklykh lokalno zamknutykh mnozhestvakh”, Vladikavk. matem. zhurn., 10:2 (2008), 36–45 | MR