On uniform convergence of piecewise-linear solutions to minimal surface equation
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider piecewise-linear solutions of the minimal surface equation over a given triangulation of a polyhedral domain. It is shown that under certain conditions, the gradients of these functions are bounded as the maximal diameter of the triangles of the triangulation tends to zero. It is stressed that this property holds if the piecewise-linear function approximates the area of the graph of a smooth function with a required accuracy. An implication of the obtained properties is the uniform convergence of piecewise linear solutions to the exact solution of the minimal surface equation.
Keywords: piecewise-linear functions, minimal surface equation, the approximation of the area functional.
@article{UFA_2014_6_3_a0,
     author = {M. A. Gatsunaev and A. A. Klyachin},
     title = {On uniform convergence of piecewise-linear solutions to minimal surface equation},
     journal = {Ufa mathematical journal},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/}
}
TY  - JOUR
AU  - M. A. Gatsunaev
AU  - A. A. Klyachin
TI  - On uniform convergence of piecewise-linear solutions to minimal surface equation
JO  - Ufa mathematical journal
PY  - 2014
SP  - 3
EP  - 16
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/
LA  - en
ID  - UFA_2014_6_3_a0
ER  - 
%0 Journal Article
%A M. A. Gatsunaev
%A A. A. Klyachin
%T On uniform convergence of piecewise-linear solutions to minimal surface equation
%J Ufa mathematical journal
%D 2014
%P 3-16
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/
%G en
%F UFA_2014_6_3_a0
M. A. Gatsunaev; A. A. Klyachin. On uniform convergence of piecewise-linear solutions to minimal surface equation. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/