On uniform convergence of piecewise-linear solutions to minimal surface equation
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider piecewise-linear solutions of the minimal surface equation over a given triangulation of a polyhedral domain. It is shown that under certain conditions, the gradients of these functions are bounded as the maximal diameter of the triangles of the triangulation tends to zero. It is stressed that this property holds if the piecewise-linear function approximates the area of the graph of a smooth function with a required accuracy. An implication of the obtained properties is the uniform convergence of piecewise linear solutions to the exact solution of the minimal surface equation.
Keywords: piecewise-linear functions, minimal surface equation, the approximation of the area functional.
@article{UFA_2014_6_3_a0,
     author = {M. A. Gatsunaev and A. A. Klyachin},
     title = {On uniform convergence of piecewise-linear solutions to minimal surface equation},
     journal = {Ufa mathematical journal},
     pages = {3--16},
     year = {2014},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/}
}
TY  - JOUR
AU  - M. A. Gatsunaev
AU  - A. A. Klyachin
TI  - On uniform convergence of piecewise-linear solutions to minimal surface equation
JO  - Ufa mathematical journal
PY  - 2014
SP  - 3
EP  - 16
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/
LA  - en
ID  - UFA_2014_6_3_a0
ER  - 
%0 Journal Article
%A M. A. Gatsunaev
%A A. A. Klyachin
%T On uniform convergence of piecewise-linear solutions to minimal surface equation
%J Ufa mathematical journal
%D 2014
%P 3-16
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/
%G en
%F UFA_2014_6_3_a0
M. A. Gatsunaev; A. A. Klyachin. On uniform convergence of piecewise-linear solutions to minimal surface equation. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/

[1] Mikhailenko V. E., Kovalev S. N., Konstruirovanie form sovremennykh arkhitekturnykh sooruzhenii, Budivelnik, Kiev, 1978, 138 pp.

[2] Abdyushev A. A., Miftakhutdinov I. Kh., Osipov P. P., “Proektirovanie nepologikh obolochek minimalnoi poverkhnosti”, Izvestiya KazGASU. Stroitelnye konstruktsii, zdaniya i sooruzheniya, 2009, no. 2(12), 86–92

[3] Miklyukov V. M., “Ob odnom novom podkhode k teoreme Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Matem. sb., 108(150):2 (1979), 268–289 | MR | Zbl

[4] Hwang Jenn-Fang, “A uniqueness theorem for the minimal surface equation”, Pacific Journal of Mathematics, 176:2 (1996), 357–364 | MR | Zbl

[5] Hwang Jenn-Fang, “How many theorems can be derived from a vector function – on uniqueness theorems for the minimal surface equation”, Taiwanese J. Math., 7:4 (2003), 513–539 | MR | Zbl

[6] R. Finn, “Remarks relevant to minimal surfaces and to surfaces of constant mean curvature”, J. d'Analyse Math., 14 (1965), 139–160 | DOI | MR | Zbl

[7] T. Rado, “The problem of the least area and the problem of Plateau”, J. d'Analyse Math. Z., 32 (1930), 763–796 | DOI | MR

[8] Bernshtein S. N., “Ob uravneniyakh variatsionnogo ischisleniya”, UMN, 1941, no. 8, 32–74

[9] Bernshtein S. N., Petrovskii I. G., “O pervoi kraevoi zadache (zadache Dirikhle) dlya uravnenii ellipticheskogo tipa i o svoistvakh funktsii, udovletvoryayuschikh etim uravneniyam”, UMN, 1941, no. 8, 8–31 | MR | Zbl

[10] J. Serrin, “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables”, Phil. Trans. Royal Soc. London A, 264 (1964), 313–496 | MR

[11] G. Stampacchia, “On some multiple integral problems in the calculus of variations”, Comm. Pure Appl. Math., 16 (1963), 382–422 | MR

[12] H. Jenkins, J. Serrin, “The Dirichlet problem for the minimal surface equation in higher dimension”, J. Reine Angew. Math., 229 (1968), 170–187 | MR | Zbl

[13] R. C. Bassanezi, U. Massari, “The Dirichlet problem for the minimal surface equation in non-regular domains”, Ann. Univ. Ferrara, 24 (1978), 181–189 | MR | Zbl

[14] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1962 | MR

[15] Klyachin A. A., “O skorosti skhodimosti posledovatelnosti, minimiziruyuschei funktsional ploschadi”, Zapiski seminara “Sverkhmedlennye protsessy”, Vyp. 2, Izd-vo VolGU, Volgograd, 2007, 136–142

[16] Klyachin A. A., “O skorosti skhodimosti posledovatelnosti, dostavlyayuschei minimum v variatsionnoi zadache”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2012, no. 1(16), 12–20

[17] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl