@article{UFA_2014_6_3_a0,
author = {M. A. Gatsunaev and A. A. Klyachin},
title = {On uniform convergence of piecewise-linear solutions to minimal surface equation},
journal = {Ufa mathematical journal},
pages = {3--16},
year = {2014},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/}
}
M. A. Gatsunaev; A. A. Klyachin. On uniform convergence of piecewise-linear solutions to minimal surface equation. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a0/
[1] Mikhailenko V. E., Kovalev S. N., Konstruirovanie form sovremennykh arkhitekturnykh sooruzhenii, Budivelnik, Kiev, 1978, 138 pp.
[2] Abdyushev A. A., Miftakhutdinov I. Kh., Osipov P. P., “Proektirovanie nepologikh obolochek minimalnoi poverkhnosti”, Izvestiya KazGASU. Stroitelnye konstruktsii, zdaniya i sooruzheniya, 2009, no. 2(12), 86–92
[3] Miklyukov V. M., “Ob odnom novom podkhode k teoreme Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Matem. sb., 108(150):2 (1979), 268–289 | MR | Zbl
[4] Hwang Jenn-Fang, “A uniqueness theorem for the minimal surface equation”, Pacific Journal of Mathematics, 176:2 (1996), 357–364 | MR | Zbl
[5] Hwang Jenn-Fang, “How many theorems can be derived from a vector function – on uniqueness theorems for the minimal surface equation”, Taiwanese J. Math., 7:4 (2003), 513–539 | MR | Zbl
[6] R. Finn, “Remarks relevant to minimal surfaces and to surfaces of constant mean curvature”, J. d'Analyse Math., 14 (1965), 139–160 | DOI | MR | Zbl
[7] T. Rado, “The problem of the least area and the problem of Plateau”, J. d'Analyse Math. Z., 32 (1930), 763–796 | DOI | MR
[8] Bernshtein S. N., “Ob uravneniyakh variatsionnogo ischisleniya”, UMN, 1941, no. 8, 32–74
[9] Bernshtein S. N., Petrovskii I. G., “O pervoi kraevoi zadache (zadache Dirikhle) dlya uravnenii ellipticheskogo tipa i o svoistvakh funktsii, udovletvoryayuschikh etim uravneniyam”, UMN, 1941, no. 8, 8–31 | MR | Zbl
[10] J. Serrin, “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables”, Phil. Trans. Royal Soc. London A, 264 (1964), 313–496 | MR
[11] G. Stampacchia, “On some multiple integral problems in the calculus of variations”, Comm. Pure Appl. Math., 16 (1963), 382–422 | MR
[12] H. Jenkins, J. Serrin, “The Dirichlet problem for the minimal surface equation in higher dimension”, J. Reine Angew. Math., 229 (1968), 170–187 | MR | Zbl
[13] R. C. Bassanezi, U. Massari, “The Dirichlet problem for the minimal surface equation in non-regular domains”, Ann. Univ. Ferrara, 24 (1978), 181–189 | MR | Zbl
[14] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1962 | MR
[15] Klyachin A. A., “O skorosti skhodimosti posledovatelnosti, minimiziruyuschei funktsional ploschadi”, Zapiski seminara “Sverkhmedlennye protsessy”, Vyp. 2, Izd-vo VolGU, Volgograd, 2007, 136–142
[16] Klyachin A. A., “O skorosti skhodimosti posledovatelnosti, dostavlyayuschei minimum v variatsionnoi zadache”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2012, no. 1(16), 12–20
[17] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl