Description of zero sequences for holomorphic and meromorphic functions of finite $\lambda$-type in a closed half-strip
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 121-125
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe the zero sets of holomorphic and meromorphic functions $f$ of finite $\lambda$-type in a closed half-strip satisfying $f(\sigma)=f(\sigma+2\pi i)$ on the boundary.
Keywords:
holomorphic function, meromorphic function, function of finite $\lambda$-type, sequence of finite $\lambda$-density
Mots-clés : $\lambda$-admissible sequence.
Mots-clés : $\lambda$-admissible sequence.
@article{UFA_2014_6_2_a9,
author = {N. B. Sokulska},
title = {Description of zero sequences for holomorphic and meromorphic functions of finite $\lambda$-type in a~closed half-strip},
journal = {Ufa mathematical journal},
pages = {121--125},
year = {2014},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a9/}
}
TY - JOUR AU - N. B. Sokulska TI - Description of zero sequences for holomorphic and meromorphic functions of finite $\lambda$-type in a closed half-strip JO - Ufa mathematical journal PY - 2014 SP - 121 EP - 125 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a9/ LA - en ID - UFA_2014_6_2_a9 ER -
N. B. Sokulska. Description of zero sequences for holomorphic and meromorphic functions of finite $\lambda$-type in a closed half-strip. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 121-125. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a9/
[1] J. E. Littlewood, “On the zeros of the Riemann zeta-function”, Proc. Camb. Philos. Soc., 22 (1924), 295–318 | DOI | Zbl
[2] N. B. Sokul's'ka, “Meromorphic functions of finite $\lambda$-type in half-strip”, Carpathian Mathematical Publications, 4:2 (2012), 328–339 (in Ukrainian)
[3] L. A. Rubel, B. A. Taylor, “Fourier series method for meromorphic functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl
[4] A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier series method in complex analysis (Merkrijärvi, 2005), Univ. Joensuu Dept. Math. Rep. Ser., 10, 2006, 9–111 | MR | Zbl
[5] A. A. Kondratyuk, Fourier Series and Meromorphic Functions, Izdat. L'viv Univ., L'viv, 1988, 196 pp. (in Russian) | Zbl