Levy's phenomenon for entire functions of several variables
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 111-120

Voir la notice de l'article provenant de la source Math-Net.Ru

For entire functions $f(z)=\sum_{n=0}^{+\infty}a_nz^n$, $z\in\mathbb C$, P. Lévy (1929) established that in the classical Wiman's inequality $M_f(r)\leq\mu_f(r)(\ln\mu_f(r))^{1/2+\varepsilon}$, $\varepsilon>0$, which holds outside a set of finite logarithmic measure, the constant $1/2$ can be replaced almost surely in some sense by $1/4$; here $M_f(r)=\max\{|f(z)|\colon|z|=r\}$, $\mu_f(r)=\max\{|a_n|r^n\colon n\geq0\}$, $r>0$. In this paper we prove that the phenomenon discovered by P. Lévy holds also in the case of Wiman's inequality for entire functions of several variables, which gives an affirmative answer to the question of A. A. Goldberg and M. M. Sheremeta (1996) on the possibility of this phenomenon.
Keywords: Levy's phenomenon, random entire functions of several variables, Wiman's inequality.
@article{UFA_2014_6_2_a8,
     author = {A. O. Kuryliak and O. B. Skaskiv and O. V. Zrum},
     title = {Levy's phenomenon for entire functions of several variables},
     journal = {Ufa mathematical journal},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/}
}
TY  - JOUR
AU  - A. O. Kuryliak
AU  - O. B. Skaskiv
AU  - O. V. Zrum
TI  - Levy's phenomenon for entire functions of several variables
JO  - Ufa mathematical journal
PY  - 2014
SP  - 111
EP  - 120
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/
LA  - en
ID  - UFA_2014_6_2_a8
ER  - 
%0 Journal Article
%A A. O. Kuryliak
%A O. B. Skaskiv
%A O. V. Zrum
%T Levy's phenomenon for entire functions of several variables
%J Ufa mathematical journal
%D 2014
%P 111-120
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/
%G en
%F UFA_2014_6_2_a8
A. O. Kuryliak; O. B. Skaskiv; O. V. Zrum. Levy's phenomenon for entire functions of several variables. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 111-120. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/