Levy's phenomenon for entire functions of several variables
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 111-120
Voir la notice de l'article provenant de la source Math-Net.Ru
For entire functions $f(z)=\sum_{n=0}^{+\infty}a_nz^n$, $z\in\mathbb C$, P. Lévy (1929) established that in the classical Wiman's inequality $M_f(r)\leq\mu_f(r)(\ln\mu_f(r))^{1/2+\varepsilon}$, $\varepsilon>0$, which holds outside a set of finite logarithmic measure, the constant $1/2$ can be replaced almost surely in some sense by $1/4$; here $M_f(r)=\max\{|f(z)|\colon|z|=r\}$, $\mu_f(r)=\max\{|a_n|r^n\colon n\geq0\}$, $r>0$. In this paper we prove that the phenomenon discovered by P. Lévy holds also in the case of Wiman's inequality for entire functions of several variables, which gives an affirmative answer to the question of A. A. Goldberg and M. M. Sheremeta (1996) on the possibility of this phenomenon.
Keywords:
Levy's phenomenon, random entire functions of several variables, Wiman's inequality.
@article{UFA_2014_6_2_a8,
author = {A. O. Kuryliak and O. B. Skaskiv and O. V. Zrum},
title = {Levy's phenomenon for entire functions of several variables},
journal = {Ufa mathematical journal},
pages = {111--120},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/}
}
TY - JOUR AU - A. O. Kuryliak AU - O. B. Skaskiv AU - O. V. Zrum TI - Levy's phenomenon for entire functions of several variables JO - Ufa mathematical journal PY - 2014 SP - 111 EP - 120 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/ LA - en ID - UFA_2014_6_2_a8 ER -
A. O. Kuryliak; O. B. Skaskiv; O. V. Zrum. Levy's phenomenon for entire functions of several variables. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 111-120. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/