Levy's phenomenon for entire functions of several variables
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 111-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For entire functions $f(z)=\sum_{n=0}^{+\infty}a_nz^n$, $z\in\mathbb C$, P. Lévy (1929) established that in the classical Wiman's inequality $M_f(r)\leq\mu_f(r)(\ln\mu_f(r))^{1/2+\varepsilon}$, $\varepsilon>0$, which holds outside a set of finite logarithmic measure, the constant $1/2$ can be replaced almost surely in some sense by $1/4$; here $M_f(r)=\max\{|f(z)|\colon|z|=r\}$, $\mu_f(r)=\max\{|a_n|r^n\colon n\geq0\}$, $r>0$. In this paper we prove that the phenomenon discovered by P. Lévy holds also in the case of Wiman's inequality for entire functions of several variables, which gives an affirmative answer to the question of A. A. Goldberg and M. M. Sheremeta (1996) on the possibility of this phenomenon.
Keywords: Levy's phenomenon, random entire functions of several variables, Wiman's inequality.
@article{UFA_2014_6_2_a8,
     author = {A. O. Kuryliak and O. B. Skaskiv and O. V. Zrum},
     title = {Levy's phenomenon for entire functions of several variables},
     journal = {Ufa mathematical journal},
     pages = {111--120},
     year = {2014},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/}
}
TY  - JOUR
AU  - A. O. Kuryliak
AU  - O. B. Skaskiv
AU  - O. V. Zrum
TI  - Levy's phenomenon for entire functions of several variables
JO  - Ufa mathematical journal
PY  - 2014
SP  - 111
EP  - 120
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/
LA  - en
ID  - UFA_2014_6_2_a8
ER  - 
%0 Journal Article
%A A. O. Kuryliak
%A O. B. Skaskiv
%A O. V. Zrum
%T Levy's phenomenon for entire functions of several variables
%J Ufa mathematical journal
%D 2014
%P 111-120
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/
%G en
%F UFA_2014_6_2_a8
A. O. Kuryliak; O. B. Skaskiv; O. V. Zrum. Levy's phenomenon for entire functions of several variables. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 111-120. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a8/

[1] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Springer, Berlin–Göttingen–Heidelberg, 1955, 164 pp. | MR | Zbl

[2] A. A. Goldberg, B. Ja. Levin, I. V. Ostrovski, “Entire and meromorphic functions”, Itogi nauky i techn. Sovr. probl. mat. Fundam. napr., 85, VINITI, 1991, 5–185 (in Russian) | MR | Zbl

[3] I. F. Bitlyan, A. A. Goldberg, “Wiman–Valiron's theorem for entire functions of several complex variables”, Vestn. Leningrad. univ., ser. mat., mech. and astr., 1959, no. 2(13), 27–41 (in Russian) | MR | Zbl

[4] P. C. Fenton, “Wiman–Valyron theory in two variables”, Trans. Amer. Math. Soc., 347:11 (1995), 4403–4412 | DOI | MR | Zbl

[5] A. Schumitzky, Wiman–Valiron theory for entire functions of several complex variables, Ph. D. Dissertation, Ithaca Cornell Univ., 1965 | MR

[6] A. Schumitzky, “A probabilistic approach to the Wiman–Valiron theory for entire functions of several complex variables”, Complex Variables, 13 (1989), 85–98 | DOI | MR | Zbl

[7] P. Lévy, “Sur la croissance de fonctions entière”, Bull. Soc. Math. France, 58 (1930), 29–59, 127–149 | MR | Zbl

[8] P. Erdős, A. Rényi, “On random entire function”, Zastosowania mat., 10 (1969), 47–55 | MR | Zbl

[9] J. Gopala Krishna, I. H. Nagaraja Rao, “Generalised inverse and probability techniques and some fundamental growth theorems in $\mathbb C^k$”, Jour. of the Indian Math. Soc., 41 (1977), 203–219 | MR | Zbl

[10] A. O. Kuryliak, O. B. Skaskiv, “Wiman's type inequalities without exceptional sets for random entire functions of several variables”, Mat. Stud., 38:1 (2012), 35–50 | MR | Zbl

[11] A. O. Kuryliak, L. O. Shapovalovska, O. B. Skaskiv, “Wiman's type inequality for some double power series”, Mat. Stud., 39:2 (2013), 134–141 | MR | Zbl

[12] O. V. Zrum, O. B. Skaskiv, “On Wiman's inequality for random entire functions of two variables”, Mat. Stud., 23:2 (2005), 149–160 (in Ukrainian) | MR | Zbl

[13] O. B. Skaskiv, O. V. Zrum, “Wiman's type inequality for entire functions of two complex variables with rapidly oscilic coefficient”, Mat. metods and fys.-mekh. polya, 48:4 (2005), 78–87 (in Ukrainian) | MR | Zbl

[14] O. B. Skaskiv, O. V. Zrum, “On inprovement of Fenton's inequality for entire functions of two complex variables”, Math. Bull. Shevchenko Sci. Soc., 3 (2006), 56–68 (in Ukrainian) | Zbl

[15] P. V. Filevych, “Some classes of entire functions in which the Wiman–Valiron inequality can be almost certainly improved”, Mat. Stud., 6 (1996), 59–66 (in Ukrainian) | MR | Zbl

[16] Siberian Math. J., 42:3 (2003), 579–586 | DOI | MR | Zbl

[17] P. V. Filevych, “The Baire categories and Wiman's inequality for entire functions”, Mat. Stud., 20:2 (2003), 215–221 | MR | Zbl