Mots-clés : bifurcation
@article{UFA_2014_6_2_a7,
author = {M. G. Yumagulov and D. A. Yakshibaeva},
title = {Study of main scenarios of bifurcation for functional differential time-delay equations},
journal = {Ufa mathematical journal},
pages = {102--110},
year = {2014},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a7/}
}
TY - JOUR AU - M. G. Yumagulov AU - D. A. Yakshibaeva TI - Study of main scenarios of bifurcation for functional differential time-delay equations JO - Ufa mathematical journal PY - 2014 SP - 102 EP - 110 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a7/ LA - en ID - UFA_2014_6_2_a7 ER -
M. G. Yumagulov; D. A. Yakshibaeva. Study of main scenarios of bifurcation for functional differential time-delay equations. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 102-110. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a7/
[1] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl
[2] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp. | MR | Zbl
[3] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR
[4] B. Balachandran, T. Kalmar-Nagy, D. Gilsinn, Delay Differential Equations. Recent Advances and New Directions, Springer, New York, NY, 2009 | MR | Zbl
[5] Kolesov Yu. S., “Obosnovanie metoda kvazinormalnykh form dlya uravneniya Khatchinsona s malym koeffitsientom diffuzii”, Izvestiya RAN. Ser. matem., 65:4 (2001), 111–132 | DOI | MR | Zbl
[6] D. Roose, R. Szalai, “Continuation and bifurcation analysis of delay differential equations”, Numerical continuation methods for dynamical systems, Springer, Dordrecht, 2007, 359–399 | DOI | MR | Zbl
[7] D. Schley, “Bifurcation and stability of periodic solutions of differential equations with state-dependent delays”, European Journal of Applied Mathematics, 14:1 (2003), 3–14 | DOI | MR | Zbl
[8] Kamenskii M. I., Lysakova Yu. V., Nistri P., “O bifurkatsii periodicheskikh reshenii dlya funktsionalno-differentsialnykh uravnenii neitralnogo tipa s malym zapazdyvaniem”, Avtomatika i telemekhanika, 2008, no. 12, 41–46 | MR | Zbl
[9] Vyshinskii A. A., Ibragimova L. S, Murtazina S. A., Yumagulov M. G, “Operatornyi metod priblizhennogo issledovaniya pravilnoi bifurkatsii v mnooparametricheskikh dinamicheskikh sistemakh”, Ufimskii matematicheskii zhurnal, 2:4 (2010), 3–26 | Zbl
[10] Krasnoselskii M. A., Operator sdviga po traektoryaim differentsialnykh uravnenii, Nauka, M., 1966, 332 pp. | MR | Zbl
[11] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp. | MR
[12] Ibragimova L. S., Yumagulov M. G., “Funktsionalizatsiya parametra i ee prilozheniya v zadache o lokalnykh bifurkatsiyakh dinamicheskikh sistem”, Avtomatika i telemekhanika, 2007, no. 4, 3–12 | MR | Zbl
[13] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp. | MR
[14] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR