Optimal system for the sum of two ideals admitted by the hydrodynamic type equations
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 97-101
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce the rules for constructing the optimal system of the dissimilar subalgebras for the sum of two ideals for which the optimal systems are known. As a result, we give the dissimilar subalgebra for five not yet considered Lie algebra admitted by the hydrodynamic type equations. It completes the listing of the subalgebras for the Lie algebras in the group classification of the gas dynamic models by the state equation.
Keywords:
Lie algebra
Mots-clés : hydrodynamic type equations, optimal system of subalgebras.
Mots-clés : hydrodynamic type equations, optimal system of subalgebras.
@article{UFA_2014_6_2_a6,
author = {S. V. Khabirov},
title = {Optimal system for the sum of two ideals admitted by the hydrodynamic type equations},
journal = {Ufa mathematical journal},
pages = {97--101},
year = {2014},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a6/}
}
S. V. Khabirov. Optimal system for the sum of two ideals admitted by the hydrodynamic type equations. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 97-101. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a6/
[1] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl
[2] Khabirov S. V., “Neizomorfnye algebry Li, dopuskaemye modelyami gazovoi dinamiki”, Ufimskii matematicheskii zhurnal, 3:2 (2011), 87–90 | Zbl
[3] Makarevich E. V., “Opimalnaya sistema podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravnenii sostoyaniya s razdelennoi plotnostyu”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 19–38 | MR
[4] Siraeva D. T., “Opimalnaya sistema 11-mernoi algebry Li, rasshirennoi kommutiruyuschim operatorom”, Ufimskii matematicheskii zhurnal, 6:1 (2014), 94–107 | Zbl