On control of degenerate distributed systems
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 77-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the control of linear distributed control systems described by differential equations in Banach spaces with a degenerate operator at the derivative. A homogeneous part of equations has a degenerate strongly continuous resolving semigroup. For such system with generally speaking time-dependent bounded operator at the control function we find the criteria of the $\varepsilon$-control for time $T$ and of the $\varepsilon$-control in for a free time in terms of the operators involved in the equation. General results are used for studying of the $\varepsilon$-control of the considered systems with a finite-dimensional input. The obtained conditions are demonstrated by examples of control systems described by partial differential equations and systems of equations unsolved with respect to the time derivative.
Keywords: control system, degenerate evolution equation, control.
Mots-clés : Sobolev type equation
@article{UFA_2014_6_2_a5,
     author = {M. V. Plekhanova and V. E. Fedorov},
     title = {On control of degenerate distributed systems},
     journal = {Ufa mathematical journal},
     pages = {77--96},
     year = {2014},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a5/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - V. E. Fedorov
TI  - On control of degenerate distributed systems
JO  - Ufa mathematical journal
PY  - 2014
SP  - 77
EP  - 96
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a5/
LA  - en
ID  - UFA_2014_6_2_a5
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A V. E. Fedorov
%T On control of degenerate distributed systems
%J Ufa mathematical journal
%D 2014
%P 77-96
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a5/
%G en
%F UFA_2014_6_2_a5
M. V. Plekhanova; V. E. Fedorov. On control of degenerate distributed systems. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 77-96. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a5/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, 1968, 359 pp. | MR

[2] R. E. Kalman, Y. C. Ho, K. S. Narendra, “Controllability of linear dynamical systems”, Contrib. Different. Equat., 1:2 (1963), 189–213 | MR | Zbl

[3] H. O. Fattorini, “On complete controllability of linear systems”, J. Different. Equat., 3 (1967), 391–402 | DOI | MR | Zbl

[4] Sholokhovich F. A., “Ob upravlyaemosti v gilbertovom prostranstve”, Differents. uravneniya, 3:3 (1967), 479–484 | Zbl

[5] Kurzhanskii A. B., “K upravlyaemosti v banakhovykh prostranstvakh”, Differents. uravneniya, 5:9 (1969), 1715–1718

[6] R. Triggiani, “Controllability and observability in Banach space with bounded operators”, SIAM J. on Control, 13:2 (1975), 462–491 | DOI | MR

[7] Shklyar B. Sh., “K upravlyaemosti lineinykh sistem s raspredelënnymi parametrami”, Differents. uravneniya, 27:3 (1991), 467–471 | MR

[8] B. Shklyar, “Exact null controllability of abstract differential equations by finite-dimensional control and strongly minimal families of exponentials”, Differential Equations and Applications, 2:3 (2011), 171–188 | DOI | MR | Zbl

[9] R. F. Curtain, “The Salamon–Weiss class of well-posed infinite dimensional linear systems: a survey”, IMA J. Math. Control Inform., 14 (1997), 207–223 | DOI | MR | Zbl

[10] Sholokhovich F. A., “Ob upravlyaemosti lineinykh dinamicheskikh sistem”, Izv. UrGU, 10:1 (1998), 103–126 | MR

[11] J. Klamka, “Controllability of dynamical systems. A survey”, Bulletin of the Polish Academy of Sciences. Technical Sciences, 61:2 (2013), 335–342 | MR

[12] D. Salamon, “On controllability and observability of time delay systems”, IEEE Transactions on Automatic Control, AC-29:5 (1984), 432–439 | DOI | MR | Zbl

[13] R. Rebarber, G. Weiss, “Necessary conditions for exact controllability with a finite-dimensional input space”, Systems and Control Letters, 40 (2000), 217–227 | DOI | MR | Zbl

[14] Plekhanova M. V., Fëdorov V. E., “O suschestvovanii i edinstvennosti reshenii zadach optimalnogo upravleniya lineinymi raspredelënnymi sistemami, ne razreshennymi otnositelno proizvodnoi po vremeni”, Izv. RAN. Ser. mat., 75:2 (2011), 177–194 | DOI | MR | Zbl

[15] Fëdorov V. E., “Lineinye uravneniya tipa Soboleva s otnositelno $p$-radialnymi operatorami”, Dokl. Akademii nauk, 351:3 (1996), 316–318 | MR | Zbl

[16] V. E. Fedorov, “Degenerate strongly continuous semigroups of operators”, St. Petersbg. Math. J., 12:3 (2001), 471–489 | MR | Zbl

[17] Ruzakova O. A., Fëdorov V. E., “Ob $\varepsilon$-upravlyaemosti lineinykh uravnenii, ne razreshennykh otnositelno proizvodnoi v banakhovykh prostranstvakh”, Vychislit. tekhnologii, 10:5 (2005), 90–102 | Zbl

[18] Fëdorov V. E., Ruzakova O. A., “Upravlyaemost lineinykh uravnenii sobolevskogo tipa s otnositelno $p$-radialnymi operatorami”, Izv. vuzov. Matematika, 2002, no. 7, 54–57 | MR | Zbl

[19] Ruzakova O. A., “Upravlyaemost lineinykh uravnenii sobolevskogo tipa v smysle silnykh reshenii”, Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem, Tr. IX Mezhdunar. Chetaevskoi konf., posvyasch. 100-letiyu N. G. Chetaeva, In-t dinamiki sistem i teorii upravleniya SO RAN, Irkutsk, 2007, 168–180

[20] Fëdorov V. E., Ruzakova O. A., “Odnomernaya upravlyaemost v gilbertovykh prostranstvakh lineinykh uravnenii sobolevskogo tipa”, Differents. uravneniya, 38:8 (2002), 1137–1139 | MR | Zbl

[21] Fëdorov V. E., Ruzakova O. A., “Odnomernaya i dvumernaya upravlyaemost uravnenii sobolevskogo tipa v banakhovykh prostranstvakh”, Mat. zametki, 74:4 (2003), 618–628 | DOI | MR | Zbl

[22] Fëdorov V. E., Shklyar B., “Polnaya nul-upravlyaemost vyrozhdennykh evolyutsionnykh uravnenii skalyarnym upravleniem”, Mat. sb., 203:12 (2012), 137–156 | DOI | MR | Zbl

[23] Fëdorov V. E., Ruzakova O. A., “O razreshimosti vozmuschennykh uravnenii sobolevskogo tipa”, Algebra i analiz, 20:4 (2008), 189–217 | MR | Zbl

[24] Fëdorov V. E., Urazaeva A. V., “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. mat. shk., Voronezh. gos. un-t, Voronezh, 2004, 161–172