Boundedness of solutions to anisotropic second order elliptic equations in unbounded domains
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 66-76

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study a class of anisotropic second order elliptic equations represented by the model equation $$ \sum_{\alpha=1}^n(|u_{x_\alpha}|^{p_\alpha-2}u_{x_\alpha})_{x_\alpha}=\sum_{\alpha=1}^n\left(\Phi_\alpha(\mathbf x)\right)_{x_\alpha},\quad p_n\geq\ldots\geq p_1>1. $$ We prove the boundedness of solutions to the homogeneous Dirichlet problem in unbounded domains located along one of the coordinate axes. We also establish an estimate for the solutions to the considered equations with a compactly supported right hand side that ensures a power decay of the solutions at infinity.
Keywords: Dirichlet problem, unbounded domain, boundedness of solutions, decay of solution.
Mots-clés : anisotropic elliptic equation
@article{UFA_2014_6_2_a4,
     author = {L. M. Kozhevnikova and A. A. Khadzhi},
     title = {Boundedness of solutions to anisotropic second order elliptic  equations in unbounded domains},
     journal = {Ufa mathematical journal},
     pages = {66--76},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Khadzhi
TI  - Boundedness of solutions to anisotropic second order elliptic  equations in unbounded domains
JO  - Ufa mathematical journal
PY  - 2014
SP  - 66
EP  - 76
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/
LA  - en
ID  - UFA_2014_6_2_a4
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Khadzhi
%T Boundedness of solutions to anisotropic second order elliptic  equations in unbounded domains
%J Ufa mathematical journal
%D 2014
%P 66-76
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/
%G en
%F UFA_2014_6_2_a4
L. M. Kozhevnikova; A. A. Khadzhi. Boundedness of solutions to anisotropic second order elliptic  equations in unbounded domains. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 66-76. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/