Boundedness of solutions to anisotropic second order elliptic equations in unbounded domains
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 66-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study a class of anisotropic second order elliptic equations represented by the model equation $$ \sum_{\alpha=1}^n(|u_{x_\alpha}|^{p_\alpha-2}u_{x_\alpha})_{x_\alpha}=\sum_{\alpha=1}^n\left(\Phi_\alpha(\mathbf x)\right)_{x_\alpha},\quad p_n\geq\ldots\geq p_1>1. $$ We prove the boundedness of solutions to the homogeneous Dirichlet problem in unbounded domains located along one of the coordinate axes. We also establish an estimate for the solutions to the considered equations with a compactly supported right hand side that ensures a power decay of the solutions at infinity.
Keywords: Dirichlet problem, unbounded domain, boundedness of solutions, decay of solution.
Mots-clés : anisotropic elliptic equation
@article{UFA_2014_6_2_a4,
     author = {L. M. Kozhevnikova and A. A. Khadzhi},
     title = {Boundedness of solutions to anisotropic second order elliptic equations in unbounded domains},
     journal = {Ufa mathematical journal},
     pages = {66--76},
     year = {2014},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Khadzhi
TI  - Boundedness of solutions to anisotropic second order elliptic equations in unbounded domains
JO  - Ufa mathematical journal
PY  - 2014
SP  - 66
EP  - 76
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/
LA  - en
ID  - UFA_2014_6_2_a4
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Khadzhi
%T Boundedness of solutions to anisotropic second order elliptic equations in unbounded domains
%J Ufa mathematical journal
%D 2014
%P 66-76
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/
%G en
%F UFA_2014_6_2_a4
L. M. Kozhevnikova; A. A. Khadzhi. Boundedness of solutions to anisotropic second order elliptic equations in unbounded domains. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 66-76. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a4/

[1] Kolodii I. M., “Ob ogranichennosti obobschennykh reshenii ellipticheskikh differentsialnykh uravnenii”, Vestnik MGU, 1970, no. 5, 45–52 | MR

[2] Kozhevnikova L. M., Khadzhi A. A., “Resheniya anizotropnykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Vestnik Sam. gos. tekhn. un-ta, 2013, no. 1(30), 90–96 | DOI

[3] Lu Ven-tuan, “K teoremam vlozheniya dlya prostranstv funktsii s chastnymi prozvodnymi, summiruemymi s razlichnymi stepenyami”, Vestnik LGU, 1961, no. 7, 23–27 | MR

[4] Kruzhkov S. N., “Kraevye zadachi dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 77(119):3 (1968), 299–334 | MR | Zbl

[5] Kozhevnikova L. M., Leontev A. A., “Otsenki resheniya anizotropnogo parabolicheskogo uravneniya s dvoinoi nelineinostyu”, Ufimsk. matem. zhurn., 3:4 (2011), 64–85 | Zbl

[6] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola norm. super. Pisa (3), 13 (1959), 115–162 | MR | Zbl

[7] Dubinskii Yu. A., “Nekotorye integralnye neravenstva i razreshimost vyrozhdayuschikhsya kvazilineinykh ellipticheskikh sistem differentsialnykh uravnenii”, Matem. sb., 64(106):3 (1964), 458–480 | MR | Zbl

[8] Klimov V. S., “K teoremam vlozheniya anizotropnykh klassov funktsii”, Matem. sb., 127(169):2(6) (1985), 198–208 | MR | Zbl

[9] J. Moser, “A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Communs Pure and Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[10] Kruzhkov S. N., “O nekotorykh svoistvakh reshenii ellipticheskikh uravnenii”, DAN SSSR, 150:3 (1963), 470–473 | Zbl

[11] J. Serrin, “Local behavior of solutions of quasi-linear equatons”, Acta math., 111:3–4 (1964), 247–302 | DOI | MR | Zbl