Estimates of decay rate for solution to parabolic equation with non-power nonlinearities
Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 3-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet mixed problem for a class parabolic equation with double non-power nonlinearities in cylindrical domain $D=(t>0)\times\Omega$. By the Galerkin approximations method suggested by Mukminov F. Kh. for a parabolic equation with double nonlinearities we prove the existence of strong solutions in Sobolev–Orlicz space. The maximum principle as well as upper and lower estimates characterizing powerlike decay of solution as $t\to\infty$ in bounded and unbounded domains $\Omega\subset R_n$ are established.
Keywords: $N$-functions, estimate of decay rate of solution, Sobolev–Orlicz spaces.
Mots-clés : parabolic equation, existence of solution
@article{UFA_2014_6_2_a0,
     author = {E. R. Andriyanova},
     title = {Estimates of decay rate for solution to parabolic equation with non-power nonlinearities},
     journal = {Ufa mathematical journal},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a0/}
}
TY  - JOUR
AU  - E. R. Andriyanova
TI  - Estimates of decay rate for solution to parabolic equation with non-power nonlinearities
JO  - Ufa mathematical journal
PY  - 2014
SP  - 3
EP  - 24
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a0/
LA  - en
ID  - UFA_2014_6_2_a0
ER  - 
%0 Journal Article
%A E. R. Andriyanova
%T Estimates of decay rate for solution to parabolic equation with non-power nonlinearities
%J Ufa mathematical journal
%D 2014
%P 3-24
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a0/
%G en
%F UFA_2014_6_2_a0
E. R. Andriyanova. Estimates of decay rate for solution to parabolic equation with non-power nonlinearities. Ufa mathematical journal, Tome 6 (2014) no. 2, pp. 3-24. http://geodesic.mathdoc.fr/item/UFA_2014_6_2_a0/