Optimal system of non-similar subalgebras of sum of two ideals
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 90-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a twelve-dimensional Lie algebra $L_{12}$ admitted by the gas dynamic equations with state equation of a special form. Lie algebra $L_{12}$ is a direct sum of two ideals $L_{11}$ and $Y_1$. For Lie algebra $L_{11}$ admitted by gas dynamic equations with an arbitrary equation of state, the optimal system of non-similar subalgebras is built up to inner automorphisms. Using the optimal system for Lie algebra $L_{11}$, in the article we obtain an optimal system of non-similar subalgebras of the sum of two ideals for $L_{11}$ and $Y_1$ and the rule of construction of such subalgebras.
Keywords: Lie algebra, optimal system, gas dynamics.
@article{UFA_2014_6_1_a8,
     author = {D. T. Siraeva},
     title = {Optimal system of non-similar subalgebras of sum of two ideals},
     journal = {Ufa mathematical journal},
     pages = {90--103},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a8/}
}
TY  - JOUR
AU  - D. T. Siraeva
TI  - Optimal system of non-similar subalgebras of sum of two ideals
JO  - Ufa mathematical journal
PY  - 2014
SP  - 90
EP  - 103
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a8/
LA  - en
ID  - UFA_2014_6_1_a8
ER  - 
%0 Journal Article
%A D. T. Siraeva
%T Optimal system of non-similar subalgebras of sum of two ideals
%J Ufa mathematical journal
%D 2014
%P 90-103
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a8/
%G en
%F UFA_2014_6_1_a8
D. T. Siraeva. Optimal system of non-similar subalgebras of sum of two ideals. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 90-103. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a8/

[1] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 336 pp.

[2] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, Monografiya, Izdatelstvo NGTU, Novosibirsk, 2012, 659 pp.

[3] Khabirov S. V., “Neizomorfnye algebry Li, dopuskaemye modelyami gazodinamicheskogo tipa”, UMZh, 2:3 (2011), 87–90 | Zbl

[4] Khabirov S. V., Analiticheskie metody v gazovoi dinamike, Gilem, Ufa, 2003, 192 pp.