Generalized Dunkl operator
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 56-65

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we introduce a generalized Dunkl operator acting in the space of entire functions on $\mathbb C$. We study problems of harmonic analysis related with this operator and show its connection with the Gelfond–Leont'ev operator of generalized differentiation.
Keywords: Dunkl operator, eigenfunction, Dunkl convolution operator, Dunkl transform, characteristic function, hypercyclic operator.
@article{UFA_2014_6_1_a4,
     author = {I. I. Karamov and V. V. Napalkov},
     title = {Generalized {Dunkl} operator},
     journal = {Ufa mathematical journal},
     pages = {56--65},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/}
}
TY  - JOUR
AU  - I. I. Karamov
AU  - V. V. Napalkov
TI  - Generalized Dunkl operator
JO  - Ufa mathematical journal
PY  - 2014
SP  - 56
EP  - 65
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/
LA  - en
ID  - UFA_2014_6_1_a4
ER  - 
%0 Journal Article
%A I. I. Karamov
%A V. V. Napalkov
%T Generalized Dunkl operator
%J Ufa mathematical journal
%D 2014
%P 56-65
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/
%G en
%F UFA_2014_6_1_a4
I. I. Karamov; V. V. Napalkov. Generalized Dunkl operator. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/