Generalized Dunkl operator
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 56-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we introduce a generalized Dunkl operator acting in the space of entire functions on $\mathbb C$. We study problems of harmonic analysis related with this operator and show its connection with the Gelfond–Leont'ev operator of generalized differentiation.
Keywords: Dunkl operator, eigenfunction, Dunkl convolution operator, Dunkl transform, characteristic function, hypercyclic operator.
@article{UFA_2014_6_1_a4,
     author = {I. I. Karamov and V. V. Napalkov},
     title = {Generalized {Dunkl} operator},
     journal = {Ufa mathematical journal},
     pages = {56--65},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/}
}
TY  - JOUR
AU  - I. I. Karamov
AU  - V. V. Napalkov
TI  - Generalized Dunkl operator
JO  - Ufa mathematical journal
PY  - 2014
SP  - 56
EP  - 65
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/
LA  - en
ID  - UFA_2014_6_1_a4
ER  - 
%0 Journal Article
%A I. I. Karamov
%A V. V. Napalkov
%T Generalized Dunkl operator
%J Ufa mathematical journal
%D 2014
%P 56-65
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/
%G en
%F UFA_2014_6_1_a4
I. I. Karamov; V. V. Napalkov. Generalized Dunkl operator. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 56-65. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a4/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[2] J. J. Betancor, M. Sifi, K. Trimeche, “Hypercyclic and chaotic convolution operators associated with the Dunkl operators on $\mathbb C$”, Acta Math. Hungar., 106:1–2 (2005), 101–116 | DOI | MR | Zbl

[3] C. F. Dunkl, “Differential-difference operators associated with reflections groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[4] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer-Verlag, Berlin, 2003, 93–135 | DOI | MR | Zbl

[5] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 77 pp. | MR

[6] Gelfond A. O., Leontev A. F., “Ob odnom obobschenii ryada Fure”, Matem. sb., 29(71):3 (1951), 477–500 | MR | Zbl

[7] Kim V. E., “Gipertsiklichnost i khaotichnost operatorov obobschennoi svertki, porozhdaemykh operatorami Gelfonda–Leonteva”, Matem. zametki, 85:6 (2009), 849–856 | DOI | MR | Zbl

[8] Panyushkin S. V., “Obobschennoe preobrazovanie Fure i ego primeneniya”, Matem. zametki, 79:4 (2006), 581–596 | DOI | MR | Zbl

[9] Leontev A. F., Obobscheniya ryadov eksponent, Nauka, M., 1981, 299 pp. | MR