@article{UFA_2014_6_1_a3,
author = {D.I. Borisov},
title = {Discrete spectrum of thin $\mathcal{PT}$-symmetric waveguide},
journal = {Ufa mathematical journal},
pages = {29--55},
year = {2014},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a3/}
}
D.I. Borisov. Discrete spectrum of thin $\mathcal{PT}$-symmetric waveguide. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 29-55. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a3/
[1] C. M. Bender, S. Boettcher, “Real spectra in non-hermitian hamiltonians having PT symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[2] A. Mostafazadeh, “Pseudo-Hermiticity versus PT-Symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214 | DOI | MR | Zbl
[3] A. Mostafazadeh, “Pseudo-Hermiticity versus PT-Symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, J. Math. Phys., 43:5 (2002), 2814–2816 | DOI | MR | Zbl
[4] A. Mostafazadeh, “Pseudo-Hermiticity versus PT-Symmetry. III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, J. Math. Phys., 43:8 (2002), 3944–3951 | DOI | MR | Zbl
[5] A. Mostafazadeh, “On the Pseudo-Hermiticity of a Class of PT-Symmetric Hamiltonians in One Dimension”, Mod. Phys. Lett. A, 17:30 (2002), 1973–1977 | DOI | MR | Zbl
[6] M. Znojil, “Exact solution for Morse oscillator in PT-symmetric quantum mechanics”, Phys. Lett. A, 264:2 (1999), 108–111 | DOI | MR | Zbl
[7] M. Znojil, “Non-Hermitian matrix description of the PT-symmetric anharmonic oscillators”, J. Phys. A: Math. Gen., 32:42 (1999), 7419–7428 | DOI | MR | Zbl
[8] M. Znojil, “PT-symmetric harmonic oscillators”, Phys. Lett. A, 259:3–4 (1999), 220–223 | DOI | MR | Zbl
[9] G. Levai, M. Znojil, “Systematic search for $\mathcal{PT}$-symmetric potentials with real energy spectra”, J. Phys. A: Math. Gen., 33:40 (2000), 7165–7180 | DOI | MR | Zbl
[10] C. M. Bender, “Making sense of non-Hermitian Hamiltionians”, Rep. Prog. Phys., 70:6 (2007), 947–1018 | DOI | MR
[11] E. Caliceti, F. Cannata, S. Graffi, “Perturbation theory of $\mathcal{PT}$-symmetric Hamiltonians”, J. Phys. A, 39:32 (2006), 10019–10027 | DOI | MR | Zbl
[12] E. Caliceti, S. Graffi, J. Sjöstrand, “Spectra of $\mathcal{PT}$-symmetric operators and perturbation theory”, J. Phys. A, 38:1 (2005), 185–193 | DOI | MR | Zbl
[13] E. Caliceti, F. Cannata, S. Graffi, “$\mathcal{PT}$-symmetric Schrödinger operators: reality of the perturbed eigenvalues”, SIGMA, 6 (2010), id 009, 8 pp. | DOI | MR
[14] P. Dorey, C. Dunning, R. Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in {$\mathcal{PT}$}-symmetric quantum mechanics”, J. Phys. A, 34:28 (2001), 5679–5704 | DOI | MR | Zbl
[15] D. Krejčiřík, H. Bíla, M. Znojil, “Closed formula for the metric in the Hilbert space of a $\mathcal{PT}$-symmetric model”, J. Phys. A, 39:32 (2006), 10143–10153 | DOI | MR | Zbl
[16] H. Langer, Ch. Tretter, “A Krein space approach to PT-symmetry”, Czech. J. Phys., 54:10 (2004), 1113–1120 | DOI | MR | Zbl
[17] K. C. Shin, “On the reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators”, Commun. Math. Phys., 220:3 (2002), 543–564 | DOI | MR
[18] M. Znojil, “$\mathcal{PT}$-symmetric square well”, Phys. Lett. A, 285:1–2 (2001), 7–10 | DOI | MR | Zbl
[19] D. Borisov, D. Krejcirik, “$\mathcal{PT}$-symmetric waveguide”, Integr. Equat. Oper. Th., 62:4 (2008), 489–515 | DOI | MR | Zbl
[20] D. Krejčiřík, M. Tater, “Non-Hermitian spectral effects in a PT-symmetric waveguide”, J. Phys. A, 41:24 (2008), id 244013 | MR | Zbl
[21] D. Krejčiřík, P. Siegl, “$\mathcal{PT}$-symmetric models in curved manifolds”, J. Phys. A, 43:48 (2010), id 485204 | MR | Zbl
[22] Borisov D. I., “O $\mathcal{PT}$-simmetrichnom volnovode s paroi malykh otverstii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 22–37
[23] D. Borisov, D. Krejčiřík, “The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions”, Asympt. Anal., 76:1 (2012), 49–59 | MR | Zbl
[24] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sib. matem. zhurn., 51:5 (2010), 1086–1101 | MR | Zbl
[25] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shrëdingera na osi”, Teor. i matem. fizika, 132:1 (2002), 97–104 | DOI | MR | Zbl
[26] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Matematicheskii sbornik, 197:4 (2006), 3–32 | DOI | MR | Zbl
[27] Nazarov S. A., Asimptoticheskii analiz tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga (IDMI), Novosibirsk, 2002, 406 pp.
[28] D. Borisov, P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:2 (2009), 547–560 | DOI | MR | Zbl
[29] D. Borisov, P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in Rd”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR | Zbl
[30] D. Borisov, G. Cardone, “Complete asymptotic expansions for the eigenvalues of the Dirichlet Laplacian in thin three-dimensional rods”, ESAIM. Contr. Op. Ca. Va., 17:3 (2011), 887–908 | DOI | MR | Zbl
[31] G. Cardone, A. Corbo-Esposito, G. Panasenko, “Asymptotic partial decomposition for diffusion with sorption in thin structures”, Nonlin. Anal., 65:1 (2006), 79–106 | DOI | MR | Zbl
[32] G. Panasenko, E. Perez, “Asymptotic partial decomposition of domain for spectral problems in rod structures”, J. Math. Pures Appl., 87:1 (2007), 1–36 | DOI | MR | Zbl
[33] Borisov D. I., “Asimptotiki i otsenki sobstvennykh elementov Laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN. Ser. matem., 67:6 (2003), 23–70 | DOI | MR | Zbl
[34] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 408 pp. | MR
[35] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1982, 740 pp. | MR
[36] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 392 pp. | MR
[37] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 577 pp. | MR
[38] D. Borisov, “Asymptotic behaviour of the spectrum of a waveguide with distant perturbation”, Math. Phys. Anal. Geom., 10:2 (2007), 155–196 | DOI | MR | Zbl