Problem of multiple interpolation in class of analytical functions of zero order in half-plane
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 18-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider the problem of multiple interpolation in a class of functions of a zero order and type not exceeding normal in the upper halfplane of the complex variable. This problem belongs to the class of problems of free interpolation considered initially by A. F. Leont'ev. We find necessary and sufficient solvability conditions for this problem. The found criteria are formulated in terms of the canonical products constructed on knots of interpolation, and in terms of the Nevanlinna measure determined by these knots. The work is a continuation of researches of the first author considered similar problems in classes of analytic functions in the upper half-plane of a nonzero order.
Keywords: zero specified order, divisor, canonical product, Levin condition, Nevanlinna measure.
Mots-clés : multiple interpolation
@article{UFA_2014_6_1_a2,
     author = {O. A. Bozhenko and K. G. Malyutin},
     title = {Problem of multiple interpolation in class of analytical functions of zero order in half-plane},
     journal = {Ufa mathematical journal},
     pages = {18--28},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a2/}
}
TY  - JOUR
AU  - O. A. Bozhenko
AU  - K. G. Malyutin
TI  - Problem of multiple interpolation in class of analytical functions of zero order in half-plane
JO  - Ufa mathematical journal
PY  - 2014
SP  - 18
EP  - 28
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a2/
LA  - en
ID  - UFA_2014_6_1_a2
ER  - 
%0 Journal Article
%A O. A. Bozhenko
%A K. G. Malyutin
%T Problem of multiple interpolation in class of analytical functions of zero order in half-plane
%J Ufa mathematical journal
%D 2014
%P 18-28
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a2/
%G en
%F UFA_2014_6_1_a2
O. A. Bozhenko; K. G. Malyutin. Problem of multiple interpolation in class of analytical functions of zero order in half-plane. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 18-28. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a2/

[1] Leontev A. F., “Ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka”, Dokl. AN SSSR, 61:5 (1948), 785–787 | MR | Zbl

[2] Leontev A. F., “Ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka normalnogo tipa”, Dokl. AN SSSR, 66:2 (1949), 153–156 | MR | Zbl

[3] Leontev A. F., “K voprosu ob interpolyatsii v klasse tselykh funktsii konechnogo poryadka”, Matem. sb., 41(83):1 (1957), 81–96 | MR | Zbl

[4] Lapin G. P., “O tselykh funktsiyakh konechnogo poryadka, prinimayuschikh vmeste s proizvodnymi zadannye znacheniya v zadannykh tochkakh”, Sib. mat. zhurn., 6:6 (1965), 1267–1281 | MR | Zbl

[5] Firsakova O. S., “Nekotorye voprosy interpolirovaniya s pomoschyu tselykh funktsii”, Dokl. AN SSSR, 120:3 (1958), 477–480 | MR

[6] Bratischev A. V., “Ob interpolyatsionnoi zadache v nekotorykh klassakh tselykh funktsii”, Sib. mat. zhurn., 17:1 (1976), 30–40 | MR

[7] Bratischev A. V., Korobeinik Yu. F., “Kratnaya interpolyatsionnaya zadacha v prostranstve tselykh funktsii zadannogo utochnennogo poryadka”, Izv. AN SSSR. Ser. mat., 40:5 (1976), 1102–1127 | MR | Zbl

[8] Malyutin K. G., “Zadacha kratnoi interpolyatsii v poluploskosti v klasse analiticheskikh funktsii konechnogo poryadka i normalnogo tipa”, Matem. sb., 184:2 (1993), 129–144 | MR | Zbl

[9] Troshin G. D., “Ob interpolirovanii funktsii, analiticheskikh v ugle”, Matem. sb., 39(81):2 (1956), 239–252 | MR | Zbl

[10] Malyutin K. G., “Modifitsirovannyi metod Dzhonsa dlya resheniya zadach kratnoi interpolyatsii v poluploskosti”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu, v. 3, eds. Korobeinik Yu. F., Kusraev A. G., VNTs RAN i RSO-A, Vladikavkaz, 2009, 143–164

[11] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, Moskva, 1956, 632 pp.

[12] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge university press, Cambridge–London–New-York–New Rochele–Melburn–Sydney, 1987, 516 pp. | MR | Zbl

[13] Grishin A. F., Malyutina T. I., “Ob utochnennom poryadke”, Kompleksnyi analiz i matematicheskaya fizika, Sb. statei, Krasnoyarskii gosuniversitet, Krasnoyarsk, 1998, 10–24

[14] A. F. Grishin, T. I. Malyutina, “General properties of subharmonic functions of finite order in a complex half-plane”, Vestn. Khark. nats. un-ta. Ser. matem., prikl. matem. i mekhanika, 2000, no. 475, 20–44 | Zbl

[15] Grishin A. F., “Nepreryvnost i asimptoticheskaya nepreryvnost subgarmonicheskikh funktsii”, Matematicheskaya fizika, analiz, geometriya, 1:2 (1994), 193—215 | MR | Zbl

[16] Grishin A. F., “O regulyarnosti rosta subgarmonicheskikh funktsii”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 7, 1968, 59–84 | Zbl