On structure of integrals for systems of discrete equations
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 111-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we describe the structure of integrals of systems of discrete equations. We consider an example of discrete Toda chain corresponding to Lie algebra of series $A_2$.
Keywords: system of discrete equations, complete set of integrals.
@article{UFA_2014_6_1_a10,
     author = {M. V. Yangubaeva},
     title = {On structure of integrals for systems of discrete equations},
     journal = {Ufa mathematical journal},
     pages = {111--116},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a10/}
}
TY  - JOUR
AU  - M. V. Yangubaeva
TI  - On structure of integrals for systems of discrete equations
JO  - Ufa mathematical journal
PY  - 2014
SP  - 111
EP  - 116
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a10/
LA  - en
ID  - UFA_2014_6_1_a10
ER  - 
%0 Journal Article
%A M. V. Yangubaeva
%T On structure of integrals for systems of discrete equations
%J Ufa mathematical journal
%D 2014
%P 111-116
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a10/
%G en
%F UFA_2014_6_1_a10
M. V. Yangubaeva. On structure of integrals for systems of discrete equations. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 111-116. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a10/

[1] G. Darboux, Lecons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, v. 1–4, Gauthier-Villars, Paris, 1896 | Zbl

[2] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Annales de la faculté des Sciences de l'Université de Toulouse $2^e$ série, 1:1 (1899), 31–78 | MR | Zbl

[3] Leznov A. N., Smirnov V. G., Shabat A. B., “Gruppa vnutrennikh simmetrii i usloviya integriruemosti dvumernykh dinamicheskikh sistem”, TMF, 51:1 (1982), 10–21 | MR | Zbl

[4] Shabat A. B., Yamilov R. I., Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981, 22 pp.

[5] Zhiber A. V., Murtazina R. D., Khabibullin I. T., Shabat A. B., Kharakteristicheskie koltsa Li i nelieinye integriruemye uravneniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2012, 376 pp.

[6] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable equations”, Journal of Mathematical Physics, 49 (2008), No 102702 | DOI | MR | Zbl

[7] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x}=t_x+d(t,t_1)$”, Journal of Mathematical Physics, 50 (2009), No 102710 | DOI | MR | Zbl

[8] Zhiber A. V., Gureva A. M., “O kharakteristicheskom uravnenii kvazilineinoi giperbolicheskoi sistemy uravnenii”, Vestnik UGATU (Ufa), 6:2(13) (2005), 26–34

[9] Zhiber A. V., Kostrigina O. S., “Kharakteristicheskie algebry nelineinykh giperbolicheskikh sistem uravnenii”, Zhurn. SFU. Ser. Matem. i fiz., 3:2 (2010), 173–184

[10] Adler V. E., Startsev S. Ya., “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | MR | Zbl

[11] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1(337) (2001), 63–106 | DOI | MR | Zbl

[12] R. N. Garifullin, R. I. Yamilov, “Examples of Darboux Integrable Discrete Equations Possessing First Integrals of an Arbitrarily High Minimal Order”, Ufimskii matematicheskii zhurnal, 4:3 (2012), 177–183

[13] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45 (2012), No 345205 | DOI | MR | Zbl

[14] R. N. Garifullin, I. T. Habibullin, M. V. Yangubaeva, “Affine and Finite Lie Algebras and Integrable Toda Field Equations on Discrete Space-Time”, SIGMA, 8 (2012), 062, 33 pp. | DOI | MR | Zbl