Factorization problem with intersection
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a generalization of the factorization method to the case when $\mathcal G$ is a finite-dimensional Lie algebra $\mathcal G=\mathcal G_0\oplus M\oplus N$ (direct sum of vector spaces), where $\mathcal G_0$ is a subalgebra in $\mathcal G$, $M,N$ are $\mathcal G_0$-modules, and $\mathcal G_0+M$, $\mathcal G_0+N$ are subalgebras in $\mathcal G$. In particular, our construction involves the case when $\mathcal G$ is a $\mathbb Z$-graded Lie algebra. Using this generalization, we construct certain top-like systems related to algebra $so(3,1)$. According to the general scheme, these systems can be reduced to solving systems of linear equations with variable coefficients. For these systems we find polynomial first integrals and infinitesimal symmetries.
Keywords: factorization method, Lie algebra, integrable dynamical systems.
@article{UFA_2014_6_1_a0,
     author = {R. A. Atnagulova and O. V. Sokolova},
     title = {Factorization problem with intersection},
     journal = {Ufa mathematical journal},
     pages = {3--11},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a0/}
}
TY  - JOUR
AU  - R. A. Atnagulova
AU  - O. V. Sokolova
TI  - Factorization problem with intersection
JO  - Ufa mathematical journal
PY  - 2014
SP  - 3
EP  - 11
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a0/
LA  - en
ID  - UFA_2014_6_1_a0
ER  - 
%0 Journal Article
%A R. A. Atnagulova
%A O. V. Sokolova
%T Factorization problem with intersection
%J Ufa mathematical journal
%D 2014
%P 3-11
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a0/
%G en
%F UFA_2014_6_1_a0
R. A. Atnagulova; O. V. Sokolova. Factorization problem with intersection. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a0/

[1] B. Konstant, “Quantization and representation theory”, Lect. Notes Ser., 34, 1979, 287–316

[2] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 7:4 (1983), 17–33 | MR | Zbl

[3] Golod P. I., “Gamiltonovy sistemy na orbitakh affinnykh grupp Li i nelineinye integriruemye uravneniya”, Fizika mnogochastichnykh sistem, 7, Naukova Dumka, Kiev, 1985, 30–39 | MR

[4] Golubchik I. Z., Sokolov V. V., “O nekotorykh obobscheniyakh metoda faktorizatsii”, TMF, 110:3 (1997), 339–350 | DOI | MR | Zbl

[5] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izvestiya AN SSSR. Cer. mat., 42:2 (1978), 396–415 | MR | Zbl

[6] Reiman A. G., Semenov-Tyan-Shanskii M. A., Integriruemye sistemy. Teoretiko–gruppovoi podkhod, RKhD, Izhevsk, 2003, 351 pp.

[7] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, RKhD, Izhevsk, 2001, 384 pp. | MR

[8] Veselov A. P., “Ob uslovikh integriruemosti uravneniya Eilera na $so(4)$”, DAN SSSR, 270:6 (1983), 1298–1300 | MR | Zbl

[9] Sokolov V. V., “Ob odnom klasse kvadratichnykh gamiltonianov na $so(4)$”, Doklady RAN, 394:5 (2004), 602–605 | MR | Zbl

[10] V. V. Sokolov, T. Wolf, “New integrable quadratic Hamiltonians on $so(4)$ and $so(3,1)$”, Journal Phys. A: Math. Gen., 39 (2006), 1915–1936 | DOI | MR