Group classification of a class of semilinear pseudoparabolic equations
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 101-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Group classification is implemented for a pseudoparabolic partial differential equation with two parameters. Equivalence transformations groups are found and used for classification of the equation parameters. Kernels of principal symmetries groups are found for the equations. Principal symmetries groups are found for specifications of parameters expanding the kernel of transformations groups. The obtained submodels are summarized in a table at the end of the paper.
Keywords: Lie algebra, submodels programm.
Mots-clés : group classification
@article{UFA_2013_5_4_a9,
     author = {A. V. Panov},
     title = {Group classification of a class of semilinear pseudoparabolic equations},
     journal = {Ufa mathematical journal},
     pages = {101--111},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a9/}
}
TY  - JOUR
AU  - A. V. Panov
TI  - Group classification of a class of semilinear pseudoparabolic equations
JO  - Ufa mathematical journal
PY  - 2013
SP  - 101
EP  - 111
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a9/
LA  - en
ID  - UFA_2013_5_4_a9
ER  - 
%0 Journal Article
%A A. V. Panov
%T Group classification of a class of semilinear pseudoparabolic equations
%J Ufa mathematical journal
%D 2013
%P 101-111
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a9/
%G en
%F UFA_2013_5_4_a9
A. V. Panov. Group classification of a class of semilinear pseudoparabolic equations. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 101-111. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a9/

[1] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[2] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 736 pp. | Zbl

[3] N. J. Hoff, “Creep buckling”, Aeron. Quarterly, 7:1 (1956), 1–20

[4] Ovsyannikov L. V., “Programma PODMODELI. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 29–55 | MR

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR | Zbl

[6] Meleshko S. V., “Gruppovaya klassifikatsiya uravnenii dvumernykh dvizhenii gaza”, Prikladnaya matematika i mekhanika, 58:4 (1994), 56–62 | MR | Zbl

[7] Khabirov S. V., “Gruppovaya klassifikatsiya sistem Gamiltona”, Dinamika sploshnoi sredy, 44, Novosibirsk, 1980, 139–146 | MR | Zbl

[8] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, Izd-vo NGTU, Novosibirsk, 2012, 659 pp.