Convergence domain for series of exponential polynomials
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 82-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the convergence of exponential polynomials series constructed by almost exponential sequences of such polynomials. Particular cases of such series are series of exponential monoms, exponential series, Dirichlet series and power series. We obtain an analogue of Abel theorem for these series implying in particular results on continuation of convergence. An analogue of the Cauchy–Hadamard theorem is obtained as well. We give a formula allowing one to recover the convergence domain for these series by their coefficients. The obtained results include Abel and Cauchy–Hadamard theorems for exponential monoms series, exponential series, Dirichlet series and power series.
Keywords: exponential polynomial, convex domain,exponential series, invariant subspace
Mots-clés : convergence domain.
@article{UFA_2013_5_4_a7,
     author = {O. A. Krivosheyeva},
     title = {Convergence domain for series of exponential polynomials},
     journal = {Ufa mathematical journal},
     pages = {82--87},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a7/}
}
TY  - JOUR
AU  - O. A. Krivosheyeva
TI  - Convergence domain for series of exponential polynomials
JO  - Ufa mathematical journal
PY  - 2013
SP  - 82
EP  - 87
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a7/
LA  - en
ID  - UFA_2013_5_4_a7
ER  - 
%0 Journal Article
%A O. A. Krivosheyeva
%T Convergence domain for series of exponential polynomials
%J Ufa mathematical journal
%D 2013
%P 82-87
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a7/
%G en
%F UFA_2013_5_4_a7
O. A. Krivosheyeva. Convergence domain for series of exponential polynomials. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 82-87. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a7/

[1] Krivosheev A. S., “Pochti eksponentsialnyi bazis”, Ufimskii matematicheskii zhurnal, 2:1 (2010), 87–96

[2] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izvestiya RAN. Seriya matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[3] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimskii matematicheskii zhurnal, 3:2 (2011), 43–56

[4] Krivosheev A. S., “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimskii matematicheskii zhurnal, 4:1 (2012), 88–106

[5] Krivosheev A. S., “Bazisy ‘po otnositelno malym gruppam’ ”, Ufimskii matematicheskii zhurnal, 2:2 (2010), 67–89 | Zbl