On Bernstein inequality for vectors
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 75-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain the Bernstein inequality for the vectors in the Banach space of the isometric representation of a one-parametric group of the operators. We introduce the notion of an entire at infinity function. For such functions and for the norms of commutation operators we obtain the Bernstein inequality.
Keywords:
Banach modulus, isometric representation, Beurling spectrum, entire function, commutation operator.
@article{UFA_2013_5_4_a6,
author = {E. E. Dikarev},
title = {On {Bernstein} inequality for vectors},
journal = {Ufa mathematical journal},
pages = {75--81},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/}
}
E. E. Dikarev. On Bernstein inequality for vectors. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 75-81. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/