On Bernstein inequality for vectors
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 75-81

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the Bernstein inequality for the vectors in the Banach space of the isometric representation of a one-parametric group of the operators. We introduce the notion of an entire at infinity function. For such functions and for the norms of commutation operators we obtain the Bernstein inequality.
Keywords: Banach modulus, isometric representation, Beurling spectrum, entire function, commutation operator.
@article{UFA_2013_5_4_a6,
     author = {E. E. Dikarev},
     title = {On {Bernstein} inequality  for vectors},
     journal = {Ufa mathematical journal},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/}
}
TY  - JOUR
AU  - E. E. Dikarev
TI  - On Bernstein inequality  for vectors
JO  - Ufa mathematical journal
PY  - 2013
SP  - 75
EP  - 81
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/
LA  - en
ID  - UFA_2013_5_4_a6
ER  - 
%0 Journal Article
%A E. E. Dikarev
%T On Bernstein inequality  for vectors
%J Ufa mathematical journal
%D 2013
%P 75-81
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/
%G en
%F UFA_2013_5_4_a6
E. E. Dikarev. On Bernstein inequality  for vectors. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 75-81. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/