On Bernstein inequality for vectors
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 75-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the Bernstein inequality for the vectors in the Banach space of the isometric representation of a one-parametric group of the operators. We introduce the notion of an entire at infinity function. For such functions and for the norms of commutation operators we obtain the Bernstein inequality.
Keywords: Banach modulus, isometric representation, Beurling spectrum, entire function, commutation operator.
@article{UFA_2013_5_4_a6,
     author = {E. E. Dikarev},
     title = {On {Bernstein} inequality for vectors},
     journal = {Ufa mathematical journal},
     pages = {75--81},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/}
}
TY  - JOUR
AU  - E. E. Dikarev
TI  - On Bernstein inequality for vectors
JO  - Ufa mathematical journal
PY  - 2013
SP  - 75
EP  - 81
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/
LA  - en
ID  - UFA_2013_5_4_a6
ER  - 
%0 Journal Article
%A E. E. Dikarev
%T On Bernstein inequality for vectors
%J Ufa mathematical journal
%D 2013
%P 75-81
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/
%G en
%F UFA_2013_5_4_a6
E. E. Dikarev. On Bernstein inequality for vectors. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 75-81. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a6/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[2] Lyubich Yu. I., “Ob usloviyakh polnoty sistemy sobstvennykh vektorov korrektnogo operatora”, UMN, 18:1(109) (1963), 165–171 | MR | Zbl

[3] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[4] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, VGU, Voronezh, 1987 | MR

[5] Baskakov A. G., “Neravenstva bernshteinovskogo tipa v abstraktnom garmonicheskom analize”, Sib. matem. zhurn., 20:5 (1979), 942–952 | MR | Zbl

[6] Danford N., Lineinye operatory: Obschaya teoriya, Editorial URSS, M., 2010, 896 pp.

[7] Kaluzhina N. S., “Medlenno menyayuschiesya na beskonechnosti funktsii, periodicheskie na beskonechnosti funktsii i ikh svoistva”, Vestnik VGU. Ceriya fizika, matematika, 2010, no. 2, 97–102

[8] Baskakov A. G., “Spektralnyi analiz vozmuschennykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Ser. matem., 58:4 (1994), 3–32 | MR | Zbl

[9] Baskakov A. G., Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Ser. matem., 69:3 (2005), 3–54 | DOI | MR | Zbl

[10] Baskakov A. G., Kaluzhina N. S., “Teorema Bërlinga dlya funktsii s suschestvennym spektrom iz odnorodnykh prostranstv i stabilizatsiya reshenii parabolicheskikh uravnenii”, Matem. zametki, 92:5 (2012), 643–661 | DOI | Zbl