Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 58-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a regularization of Navier-Stokes equations, whose solution coincides with the solution to the system of Navier-Stokes equations if the latter exists. The regularized nonlinear system is reduced to solving a sequence of linearized systems. To solve the latter system, we employ the gradient method. We construct and justify a modified method of fastest descent, which may be employed under restrictions on the control and an unbounded Lebesgue set.
Keywords: Navier-Stokes equations, gradient method, regularization, apriori estimates.
@article{UFA_2013_5_4_a5,
     author = {I. I. Golichev},
     title = {Modified gradient fastest descent method for solving linearized non-stationary {Navier-Stokes} equations},
     journal = {Ufa mathematical journal},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/}
}
TY  - JOUR
AU  - I. I. Golichev
TI  - Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
JO  - Ufa mathematical journal
PY  - 2013
SP  - 58
EP  - 74
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/
LA  - en
ID  - UFA_2013_5_4_a5
ER  - 
%0 Journal Article
%A I. I. Golichev
%T Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
%J Ufa mathematical journal
%D 2013
%P 58-74
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/
%G en
%F UFA_2013_5_4_a5
I. I. Golichev. Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 58-74. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/