Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 58-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a regularization of Navier-Stokes equations, whose solution coincides with the solution to the system of Navier-Stokes equations if the latter exists. The regularized nonlinear system is reduced to solving a sequence of linearized systems. To solve the latter system, we employ the gradient method. We construct and justify a modified method of fastest descent, which may be employed under restrictions on the control and an unbounded Lebesgue set.
Keywords: Navier-Stokes equations, gradient method, regularization, apriori estimates.
@article{UFA_2013_5_4_a5,
     author = {I. I. Golichev},
     title = {Modified gradient fastest descent method for solving linearized non-stationary {Navier-Stokes} equations},
     journal = {Ufa mathematical journal},
     pages = {58--74},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/}
}
TY  - JOUR
AU  - I. I. Golichev
TI  - Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
JO  - Ufa mathematical journal
PY  - 2013
SP  - 58
EP  - 74
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/
LA  - en
ID  - UFA_2013_5_4_a5
ER  - 
%0 Journal Article
%A I. I. Golichev
%T Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
%J Ufa mathematical journal
%D 2013
%P 58-74
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/
%G en
%F UFA_2013_5_4_a5
I. I. Golichev. Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 58-74. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/

[1] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR

[2] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981, 408 pp. | MR | Zbl

[3] Golichev I. I., “Iterativnaya linearizatsiya evolyutsionnykh uravnenii Nave–Stoksa”, Ufimskii matematicheskii zhurnal, 4:4 (2012), 69–78

[4] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[5] Agoshkov V. I., Botvinovskii E. A., “Chislennoe reshenie sistemy Stoksa metodami sopryazhennykh uravnenii i optimalnogo upravleniya”, ZhVMiMF, 47:7 (2007), 1192–1207 | MR

[6] Golichev I. I., Sharipov T. R., “Razrabotka metodov, algoritmov i programm dlya resheniya uravnenii Nave–Stoksa kak zadachi optimalnogo upravleniya”, Vestnik UGATU. Matematika, 9:3(21) (2007), 51–57

[7] Golichev I. I., “Gradientnye metody resheniya uravnenii Nave–Stoksa”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:3 (2011), 423–425

[8] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[9] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR