Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 58-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a regularization of
Navier-Stokes equations, whose solution coincides with the solution to the system of
Navier-Stokes equations if the latter exists. The regularized
nonlinear system is reduced to solving a sequence of
linearized systems. To solve the latter system, we employ the
gradient method. We construct and justify a modified method of
fastest descent, which may be employed under
restrictions on the control and an unbounded Lebesgue set.
Keywords:
Navier-Stokes equations, gradient method, regularization, apriori estimates.
@article{UFA_2013_5_4_a5,
author = {I. I. Golichev},
title = {Modified gradient fastest descent method for solving linearized non-stationary {Navier-Stokes} equations},
journal = {Ufa mathematical journal},
pages = {58--74},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/}
}
TY - JOUR AU - I. I. Golichev TI - Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations JO - Ufa mathematical journal PY - 2013 SP - 58 EP - 74 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/ LA - en ID - UFA_2013_5_4_a5 ER -
I. I. Golichev. Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 58-74. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a5/