Spectral properties of degenerate elliptic operators with matrix coefficients
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 37-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we study some spectral properties of the non-self-adjoint operator $A$ in the space $\mathcal{H}^{l}=L_{2}(0,1)^{l}$ associated with a noncoercive sesquilinear form. We address the issues on completeness of a system of root vector-functions for operator $A$ in $\mathcal{ H}^{l}$, description of the domain of operator $A$, estimating resolvent of operator $A$ and asymptotic distribution of eigenvalues of operator $A$.
Keywords: elliptic differential operators, resolvent of operator, distribution of eigenvalues, system of root vector-functions.
@article{UFA_2013_5_4_a3,
     author = {M. G. Gadoev and S. A. Iskhokov},
     title = {Spectral properties of degenerate elliptic operators with matrix coefficients},
     journal = {Ufa mathematical journal},
     pages = {37--48},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/}
}
TY  - JOUR
AU  - M. G. Gadoev
AU  - S. A. Iskhokov
TI  - Spectral properties of degenerate elliptic operators with matrix coefficients
JO  - Ufa mathematical journal
PY  - 2013
SP  - 37
EP  - 48
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/
LA  - en
ID  - UFA_2013_5_4_a3
ER  - 
%0 Journal Article
%A M. G. Gadoev
%A S. A. Iskhokov
%T Spectral properties of degenerate elliptic operators with matrix coefficients
%J Ufa mathematical journal
%D 2013
%P 37-48
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/
%G en
%F UFA_2013_5_4_a3
M. G. Gadoev; S. A. Iskhokov. Spectral properties of degenerate elliptic operators with matrix coefficients. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 37-48. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/

[1] Gadoev M. G., “Spektralnaya asimptotika nesamosopryazhennykh vyrozhdayuschikhsya ellipticheskikh operatorov s singulyarnymi matrichnymi koeffitsientami na otrezke”, Ufimskii matematicheskii zhurnal, 3:3 (2011), 26–54 | Zbl

[2] Boimatov K. Kh., “Asimptoticheskoe povedenie sobstvennykh znachenii nesamosopryazhënnykh operatorov”, Funktsionalnyi analiz i ego prilozheniya, 11:4 (1977), 74–75 | MR | Zbl

[3] Boimatov K. Kh., Kostyuchenko A. G., “Spektralnaya asimptotika nesamosopryazhennykh ellipticheskikh sistem”, Matematicheskii sbornik, 181:12 (1990), 1678–1693 | MR | Zbl

[4] Boimatov K. Kh., Kostyuchenko A. G., “Raspredelenie sobstvennykh znachenii nesamosopryazhennykh differentsialnykh operatorov vtorogo poryadka”, Vestnik MGU, 1990, no. 3, 24–31 | MR

[5] Rozenblyum G. V., “Spektralnaya asimptotika normalnykh operatorov”, Funkts. analiz i ego prilozheniya, 16:2 (1982), 82–83 | MR | Zbl

[6] Rozenblyum G. V., “Uslovnaya asimptotika spektra operatorov, blizkikh k normalnym”, Lineinye i nelineinye kraevye zadachi. Spektralnaya teoriya, Izd-vo LGU, Leningrad, 1986, 180–195 | MR

[7] M. S. Agranovich, A. S. Markus, “On spectral properties of elliptic pseudo-differential operators far from self-adjoint ones”, Zeitshrift fur Analysis und ihre Anwendungen, 8:3 (1989), 237–260 | MR | Zbl

[8] Birman M. Sh. Solomyak M. Z., Spektralnaya teoriya samosopryazhënnykh operatorov v gilbertovom prostranstve, Izdatelstvo LGU, L., 1980, 264 pp. | MR

[9] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., “Spektralnaya teoriya differentsialnykh operatorov”, Itogi nauki i tekhniki. Sovr. probl. mat. Fund. napravleniya, 64, VINITI, 1988, 5–242 | MR | Zbl

[10] Agranovich M. S., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–129 | MR | Zbl

[11] Agranovich M. S., “Nekotorye asimptoticheskie formuly dlya ellipticheskikh psevdodifferentsialnykh operatorov”, Funktsionalnyi analiz i ego prilozheniya, 21:1 (1987), 63–65 | MR | Zbl

[12] Kozhevnikov A. N., “Ob asimptotike sobstvennykh znachenii ellipticheskikh sistem”, Funktsionalnyi analiz i ego prilozheniya, 11:4 (1977), 82–83 | MR | Zbl

[13] Boimatov K. Kh., “Asimptotika spektra nesamosopryazhennykh sistem differentsialnykh operatorov vtorogo poryadka”, Matematicheskie zametki, 51:4 (1992), 8–16 | MR | Zbl

[14] Boimatov K. Kh., “Nekotorye spektralnye svoistva matrichnykh differentsialnykh operatorov dalekikh ot samosopryazhennykh”, Funktsionalnyi analiz i ego prilozheniya, 29:3 (1995), 55–58 | MR | Zbl

[15] M. Faierman, “An elliptic boundary problem involving an indefinite weight”, Proc. of the Roy. Soc. of Edinburgh (A), 130:2 (2000), 287–305 | DOI | MR | Zbl

[16] A. N. Kozhevnikov, “Asymptotics of the spectrum of Douglis–Nirenberg elliptic operators on a compact manifold”, Math. Nachr., 182 (1996), 261–293 | DOI | MR | Zbl

[17] S. G. Pyatkov, “Riesz's bases from the eigenvectors and associated vectors of elliptic eigenvalue problems with an indefinite weight function”, Siberian Journal of Differential Equations, 1:2 (1995), 179–196 | MR

[18] M. Sango, “A spectral problem with an indefinite weight for an elliptic system”, Electronic Journal of Diff. Equations, 21 (1997), 1–14 | MR

[19] Boimatov K. Kh., “Obobschennaya zadacha Dirikhle, porozhdennaya nekoertsitivnoi formoi”, Doklady RAN, 330:3 (1993), 285–290 | MR

[20] M. G. Gadoev, S. A. Iskhokov, Spectral properties of degenerate elliptic operators with matrix coefficients, Preprint series number 1078, Centre de Recerca Matematica, Barcelona, December, 2011, 14 pp.

[21] Boimatov K. Kh., “O bazisnosti po Abelyu sistemy kornevykh vektor-funktsii vyrozhdenno-ellipticheskikh differentsialnykh operatorov s singulyarnymi matrichnymi koeffitsientami”, Sibirskii matematicheskii zhurnal, 47:1 (2006), 46–57 | MR | Zbl

[22] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[23] Nikolskii S. M., Lizorkin P. I., Miroshin N. V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izvestiya vuzov. Matematika, 1988, no. 8, 4–30 | MR | Zbl

[24] Gadoev M. G., “Ob asimptotike spektra odnogo klassa nesamosopryazhennykh sistem”, Neklassicheskie uravneniya matematicheskoi fiziki, IM SO RAN, Novosibirsk, 2007, 78–84