Spectral properties of degenerate elliptic operators with matrix coefficients
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 37-48
Voir la notice de l'article provenant de la source Math-Net.Ru
In the work we study some spectral properties of the non-self-adjoint operator $A$ in the space $\mathcal{H}^{l}=L_{2}(0,1)^{l}$ associated with a noncoercive sesquilinear form. We address the issues on completeness of a system of root vector-functions for
operator $A$ in $\mathcal{ H}^{l}$, description of the domain of operator $A$, estimating resolvent of operator $A$ and asymptotic distribution of eigenvalues of operator $A$.
Keywords:
elliptic differential operators,
resolvent of operator, distribution of eigenvalues, system of root vector-functions.
@article{UFA_2013_5_4_a3,
author = {M. G. Gadoev and S. A. Iskhokov},
title = {Spectral properties of degenerate elliptic operators with matrix coefficients},
journal = {Ufa mathematical journal},
pages = {37--48},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/}
}
TY - JOUR AU - M. G. Gadoev AU - S. A. Iskhokov TI - Spectral properties of degenerate elliptic operators with matrix coefficients JO - Ufa mathematical journal PY - 2013 SP - 37 EP - 48 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/ LA - en ID - UFA_2013_5_4_a3 ER -
M. G. Gadoev; S. A. Iskhokov. Spectral properties of degenerate elliptic operators with matrix coefficients. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 37-48. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a3/