On generalization of Paley-Wiener theorem for weighted Hardy spaces
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 30-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Hardy space $H^p_\sigma(\mathbb{C}_+) $ in the half-plane with an exponential weight. In this space we study the analytic continuation from the boundary. In the previous works for the case $p \in (1, 2] $ a result on analytic continuation from the imaginary axis was obtained, and it was a generalization of Paley–Wiener theorem. But for many applications the case $ p = 1 $ is more interesting. For this case in the paper we obtain estimates for a function satisfying certain standard conditions.
Keywords: weighted Hardy space, Paley-Wiener theorem, angular boundary values.
@article{UFA_2013_5_4_a2,
     author = {B. V. Vinnitskii and V. N. Dilnyi},
     title = {On generalization of {Paley-Wiener} theorem for weighted {Hardy} spaces},
     journal = {Ufa mathematical journal},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a2/}
}
TY  - JOUR
AU  - B. V. Vinnitskii
AU  - V. N. Dilnyi
TI  - On generalization of Paley-Wiener theorem for weighted Hardy spaces
JO  - Ufa mathematical journal
PY  - 2013
SP  - 30
EP  - 36
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a2/
LA  - en
ID  - UFA_2013_5_4_a2
ER  - 
%0 Journal Article
%A B. V. Vinnitskii
%A V. N. Dilnyi
%T On generalization of Paley-Wiener theorem for weighted Hardy spaces
%J Ufa mathematical journal
%D 2013
%P 30-36
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a2/
%G en
%F UFA_2013_5_4_a2
B. V. Vinnitskii; V. N. Dilnyi. On generalization of Paley-Wiener theorem for weighted Hardy spaces. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 30-36. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a2/