On inverse nodal problem for Sturm-Liouville operator
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we propose a solution to a certain inverse Sturm-Liouville problem, which allows one to determine the potential and the boundary conditions of the differential operator on the values of one of the differentials of Gateaux zeroes $ x_ {k, n} [q ] \in (0, \pi) $ of some eigenfunction $ \hat y (x, q, \lambda_n [q]) $ for an increment $ w $ from the set $ \mathbb W $. As $ \mathbb W $, we consider some sets of classical and generalized functions.
Keywords: eigenfunction of Sturm-Liouville problem, Gateaux differential, inverse nodal problem
Mots-clés : nodal points of Sturm-Liouville problem, inverse Sturm-Liouville problem, nodal points.
@article{UFA_2013_5_4_a10,
     author = {A. Yu. Trynin},
     title = {On inverse nodal problem for {Sturm-Liouville} operator},
     journal = {Ufa mathematical journal},
     pages = {112--124},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a10/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - On inverse nodal problem for Sturm-Liouville operator
JO  - Ufa mathematical journal
PY  - 2013
SP  - 112
EP  - 124
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a10/
LA  - en
ID  - UFA_2013_5_4_a10
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T On inverse nodal problem for Sturm-Liouville operator
%J Ufa mathematical journal
%D 2013
%P 112-124
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a10/
%G en
%F UFA_2013_5_4_a10
A. Yu. Trynin. On inverse nodal problem for Sturm-Liouville operator. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 112-124. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a10/

[1] Vinokurov V. A., Sadovnichii V. A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN, Ser. mat., 64:4 (2000), 47–108 | DOI | MR | Zbl

[2] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[3] Savchuk A. M., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Matem. zametki, 69:2 (2001), 277–285 | DOI | MR | Zbl

[4] Savchuk A. M., Shkalikov A. A., “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Trudy Matematicheskogo instituta im. V. A. Steklova, 260, 2008, 227–247 | MR | Zbl

[5] Savchuk A. M., Shkalikov A. A., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Matem. zametki, 80:6 (2006), 864–884 | DOI | MR | Zbl

[6] Veliev O. A., Shkalikov A. A., “O bazisnosti Rissa sobstvennykh i prisoedinënnykh funktsii periodicheskoi i antiperiodicheskoi zadach Shturma–Liuvillya”, Matem. zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl

[7] Suetin S. P., “Spektralnye svoistva nekotorogo klassa diskretnykh operatorov Shturma–Liuvillya”, UMN, 61:2(368) (2006), 171–172 | DOI | MR | Zbl

[8] Borisov D. I., Gadylshin R. R., “O spektre periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. matem., 72:4 (2008), 37–66 | DOI | MR | Zbl

[9] Borisov D. I., Gadylshin R. R., “O spektre samosopryazhennogo differentsialnogo operatora na osi s bystro ostsilliruyuschimi koeffitsientami”, Matem. sb., 198:8 (2007), 3–34 | DOI | MR | Zbl

[10] Borisov D. I., “O nekotorykh singulyarnykh vozmuscheniyakh periodicheskikh operatorov”, TMF, 151:2 (2007), 207–218 | DOI | MR | Zbl

[11] Pokornyi Yu. V., Pryadiev V. L., “Nekotorye voprosy kachestvennoi teorii Shturma–Liuvillya na prostranstvennoi seti”, Uspekhi mat. nauk, 59:3(357) (2004), 115–150 | DOI | MR | Zbl

[12] Pokornyi Yu. V., Zvereva M. B., Ischenko A. S., Shabrov S. A., “O neregulyarnom rasshirenii ostsillyatsionnoi teorii spektralnoi zadachi Shturma–Liuvillya”, Matem. zametki, 82:4 (2007), 578–582 | DOI | MR | Zbl

[13] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, Uspekhi mat. nauk, 63:1(379) (2008), 111–154 | DOI | MR | Zbl

[14] Trynin A. Yu., “Obobschenie teoremy otschëtov Uittekera–Kotelnikova–Shennona dlya nepreryvnykh funktsii na otrezke”, Mat. sbornik, 200:11 (2009), 61–108 | DOI | MR | Zbl

[15] Trynin A. Yu., “Ob asimptotike reshenii i uzlovykh tochek differentsialnykh vyrazhenii Shturma–Liuvillya”, Sibirsk. matem. zhurnal, 51:3 (2010), 662–675 | MR | Zbl

[16] Ambartsumyan V. A., “Über eine Frage der Eigenwerttheorie”, Zeitschr. für Physik, 53 (1929), 690–695 | DOI

[17] G. Borg, “Eine Umkehrung der Sturm–Liouvillschen Eigenwertaufgabe”, Acta Math., 78:1 (1946), 1–96 | DOI | MR | Zbl

[18] N. Levinson, “On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase”, Danske Vid. Selsk. Mat. Fys. Medd., 25:9 (1949), 25 | MR

[19] Chudov L. A., “Obratnaya zadacha Shturma–Liuvillya”, Matem. sb., 25(67):3 (1949), 451–456 | MR | Zbl

[20] Marchenko V. A., “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, DAN, 72:3 (1950), 457–460 | MR | Zbl

[21] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izvestiya Akademii Nauk SSSR, Seriya matematicheskaya, 15:4 (1951), 309–360 | MR | Zbl

[22] Marchenko V. A., “Nekotorye voprosy teorii odnomernykh differentsialnykh operatorov vtorogo poryadka”, Trudy Mosk. matem. ob-va, 1, 1952, 327–420 | MR | Zbl

[23] Levitan B. M., “Ob opredelenii operatora Shturma–Liuvillya po odnomu i dvum spektram”, Izvestiya Akademii Nauk SSSR, Seriya matematicheskaya, 42:1 (1978), 185–199 | MR | Zbl

[24] Levitan B. M., “Obratnaya zadacha dlya operatora Shturma–Liuvillya v sluchae konechno-zonnykh i beskonechno-zonnykh potentsialov”, Tr. MMO, 45, 1982, 3–36 | MR | Zbl

[25] Savchuk A. M., Shkalikov A. A., “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funktsionalnyi analiz i ego prilozheniya, 44:4 (2010), 34–53 | DOI | MR | Zbl

[26] Belishev V. M., “Granichnoe upravlenie i obratnye zadachi: odnomernyi variant BC-metoda”, Matematicheskie voprosy teorii rasprostraneniya voln. 37, Zap. nauchn. sem. POMI, 354, POMI, SPb., 2008, 19–80 | MR | Zbl

[27] J. R. McLaughlin, “Inverse spectral theory using nodal points as data – a uniqueness result”, J. Differ. Equations, 73:2 (1988), 354–362 | DOI | MR | Zbl

[28] E. S. Panakhov, H. Koyunbakan, “Inverse Nodal Problems for Second Order Differential Operators with a Regular Singularity”, International Journal of Difference Equations, 1:2 (2006), 241–247 | MR | Zbl

[29] Y-H. Cheng, C. K. Law, J. Tsay, “Remarks on a New Inverse Nodal Problem”, Journal of Mathematical Analysis and Applications, 248 (2000), 145–155 | DOI | MR | Zbl

[30] Sh. Akbarpoor, A. H. Dabbaghian, “The Uniqueness Theorem for Boundary Value Problem with Aftereffect and Eigenvalue in the Boundary Condition”, Int. J. Contemp. Math. Sciences, 6:20 (2011), 963–970 | MR | Zbl

[31] M. Sat, E. S. Panakhov, “Inverse nodal problem for Sturm–Liouville operators with coulomb potential”, International Journal of Pure and Applied Mathematics, 80:2 (2012), 173–180 | Zbl

[32] Yurko V. A., “Obratnye uzlovye zadachi dlya differentsialnykh operatorov Shturma–Liuvillya na zvezdoobraznom grafe”, Sibirskii mat. zhurn., 50:2, mart–aprel (2009), 469–475 | MR

[33] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, “Naukova dumka”, Gl. red. fiz.-mat. lit., Kiev, 1977 | MR

[34] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, “Nauka”, Gl. red. fiz.-mat. lit., M., 1984 | MR | Zbl

[35] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, “Nauka”, Gl. red. fiz.-mat. lit., M., 1988, 432 pp. | MR | Zbl

[36] Trynin A. Yu., “Ob otsutstvii ustoichivosti interpolirovaniya po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Izvestiya vyssh. uch-ykh zavedenii. Matematika, 2000, no. 9(460), 60–73 | MR | Zbl

[37] Trynin A. Yu., “Differentsialnye svoistva nulei sobstvennykh funktsii zadachi Shturma–Liuvillya”, Ufimskii matem. zhurn., 3:4 (2011), 133–143 | Zbl

[38] Vladimirov V. S., Uravneniya matematicheskoi fiziki, “Nauka”, Gl. red-ya fiziko-matematicheskoi literatury, M., 1988 | MR

[39] Nikolskii S. M., Kurs matematicheskogo analiza, v. 2, “Nauka”, Gl. red-iya fiziko-matematicheskoi literatury, M., 1983

[40] Khartman F., Obyknovennye differentsialnye uravneniya, “Mir”, M., 1970 | MR