On inverse nodal problem for Sturm-Liouville operator
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 112-124
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we propose a solution to a certain inverse Sturm-Liouville problem, which allows one to determine the potential and the boundary conditions of the differential operator on the values of one of the differentials of Gateaux zeroes $ x_ {k, n} [q ] \in (0, \pi) $ of some eigenfunction $ \hat y (x, q, \lambda_n [q]) $ for an increment $ w $ from the set $ \mathbb W $. As $ \mathbb W $, we consider some sets of classical and generalized functions.
Keywords:
eigenfunction of Sturm-Liouville problem, Gateaux differential, inverse nodal problem
Mots-clés : nodal points of Sturm-Liouville problem, inverse Sturm-Liouville problem, nodal points.
Mots-clés : nodal points of Sturm-Liouville problem, inverse Sturm-Liouville problem, nodal points.
@article{UFA_2013_5_4_a10,
author = {A. Yu. Trynin},
title = {On inverse nodal problem for {Sturm-Liouville} operator},
journal = {Ufa mathematical journal},
pages = {112--124},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a10/}
}
A. Yu. Trynin. On inverse nodal problem for Sturm-Liouville operator. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 112-124. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a10/