@article{UFA_2013_5_4_a0,
author = {M. A. Abdullin and N. S. Ismagilov and F. S. Nasyrov},
title = {One dimensional stochastic differential equations: pathwise approach},
journal = {Ufa mathematical journal},
pages = {3--15},
year = {2013},
volume = {5},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/}
}
TY - JOUR AU - M. A. Abdullin AU - N. S. Ismagilov AU - F. S. Nasyrov TI - One dimensional stochastic differential equations: pathwise approach JO - Ufa mathematical journal PY - 2013 SP - 3 EP - 15 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/ LA - en ID - UFA_2013_5_4_a0 ER -
M. A. Abdullin; N. S. Ismagilov; F. S. Nasyrov. One dimensional stochastic differential equations: pathwise approach. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/
[1] N. H. Ibragimov, Elementary Lie group analysis and ordinary equation, John Wiley Sons, Chichester, 1999, 347 pp. | MR
[2] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New Jork, 1982, 416 pp. | MR | Zbl
[3] B. Srihirun, S. V. Meleshko, E. Schulz, “On the definition of an admmited Lie group for stochastic differential equation”, Commun,Nonlinear Sci. Numer. Simul., 12:8 (2007), 1379–1389 | DOI | MR | Zbl
[4] Bibikov Yu. N., Kurs obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1991
[5] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnnye protsessy, Nauka, M., 1986 | MR
[6] Nasyrov F. S., “Simmetrichnye integraly i stokhasticheskii analiz”, Teoriya veroyatnostei i ee primen., 51:3 (2006), 496–517 | DOI | MR | Zbl
[7] Nasyrov F. S., Paramoshina I. G., “O strukture odnomernogo diffuzionnogo protsessa”, Vestnik UGATU (Ufa), 7:2(15) (2006), 127–130
[8] Nasyrov F. S., Lokalnye vremena, simmetrichnye integraly i stokhasticheskii analiz, Fizmatlit, M., 2011