One dimensional stochastic differential equations: pathwise approach
Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study path-wise analogues of one dimensional stochastic differential equations with symmetric integrals. We find existence and uniqueness conditions for solutions, the conditions of continuity and differentiability w.r.t. a parameter, as well as the conditions of linearization for such equations. We also study the structure of the solutions.
Keywords: symmetric integral, differential equations with symmetric integral.
@article{UFA_2013_5_4_a0,
     author = {M. A. Abdullin and N. S. Ismagilov and F. S. Nasyrov},
     title = {One dimensional stochastic differential equations: pathwise approach},
     journal = {Ufa mathematical journal},
     pages = {3--15},
     year = {2013},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/}
}
TY  - JOUR
AU  - M. A. Abdullin
AU  - N. S. Ismagilov
AU  - F. S. Nasyrov
TI  - One dimensional stochastic differential equations: pathwise approach
JO  - Ufa mathematical journal
PY  - 2013
SP  - 3
EP  - 15
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/
LA  - en
ID  - UFA_2013_5_4_a0
ER  - 
%0 Journal Article
%A M. A. Abdullin
%A N. S. Ismagilov
%A F. S. Nasyrov
%T One dimensional stochastic differential equations: pathwise approach
%J Ufa mathematical journal
%D 2013
%P 3-15
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/
%G en
%F UFA_2013_5_4_a0
M. A. Abdullin; N. S. Ismagilov; F. S. Nasyrov. One dimensional stochastic differential equations: pathwise approach. Ufa mathematical journal, Tome 5 (2013) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/UFA_2013_5_4_a0/

[1] N. H. Ibragimov, Elementary Lie group analysis and ordinary equation, John Wiley Sons, Chichester, 1999, 347 pp. | MR

[2] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New Jork, 1982, 416 pp. | MR | Zbl

[3] B. Srihirun, S. V. Meleshko, E. Schulz, “On the definition of an admmited Lie group for stochastic differential equation”, Commun,Nonlinear Sci. Numer. Simul., 12:8 (2007), 1379–1389 | DOI | MR | Zbl

[4] Bibikov Yu. N., Kurs obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1991

[5] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnnye protsessy, Nauka, M., 1986 | MR

[6] Nasyrov F. S., “Simmetrichnye integraly i stokhasticheskii analiz”, Teoriya veroyatnostei i ee primen., 51:3 (2006), 496–517 | DOI | MR | Zbl

[7] Nasyrov F. S., Paramoshina I. G., “O strukture odnomernogo diffuzionnogo protsessa”, Vestnik UGATU (Ufa), 7:2(15) (2006), 127–130

[8] Nasyrov F. S., Lokalnye vremena, simmetrichnye integraly i stokhasticheskii analiz, Fizmatlit, M., 2011