Invariant and partially invariant solutions with respect to Galilean shifts and dilatation
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 118-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider a three-dimensional subalgebra embedded in a four-dimensional subalgebra in order to find the set of solutions and to adjoint them the solutions on subalgebras of higher dimension. Although the aim is not reached yet, we obtain invariant solutions of the rank 1 and partially invariant solutions of the rank 1 and defect 1. We obtain two submodels being invariant and partially invariant, seven solutions depend on arbitrary function and nineteen exact solutions.
Keywords: gas dynamics, hierarchy of submodels, partially invariant solution.
Mots-clés : invariant solution
@article{UFA_2013_5_3_a9,
     author = {E. V. Makarevich},
     title = {Invariant and partially invariant solutions with respect to {Galilean} shifts and dilatation},
     journal = {Ufa mathematical journal},
     pages = {118--126},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/}
}
TY  - JOUR
AU  - E. V. Makarevich
TI  - Invariant and partially invariant solutions with respect to Galilean shifts and dilatation
JO  - Ufa mathematical journal
PY  - 2013
SP  - 118
EP  - 126
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/
LA  - en
ID  - UFA_2013_5_3_a9
ER  - 
%0 Journal Article
%A E. V. Makarevich
%T Invariant and partially invariant solutions with respect to Galilean shifts and dilatation
%J Ufa mathematical journal
%D 2013
%P 118-126
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/
%G en
%F UFA_2013_5_3_a9
E. V. Makarevich. Invariant and partially invariant solutions with respect to Galilean shifts and dilatation. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 118-126. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/

[1] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl

[2] Makarevich E. V., “Optimalnaya sistema podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravneniya sostoyaniya s razdelennoi plotnostyu”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 19–38 | MR

[3] Makarevich E. V., “Ierarkhiya podmodelei uravnenii gazovoi dinamiki s uravneniem sostoyaniya s razdelennoi plotnostyu”, Sibirskie elektronnye matematicheskie izvestiya, 9 (2012), 306–328 | MR

[4] Makarevich E. V., “Kollaps ili mgnovennyi istochnik gaza na pryamoi”, Ufimskii matematicheskii zhurnal, 4:4 (2012), 119–129

[5] Khabirov S. V., “Hierarchy of submodels of differential equations”, Archives of ALGA, 9 (2012), 79–94