Mots-clés : invariant solution
@article{UFA_2013_5_3_a9,
author = {E. V. Makarevich},
title = {Invariant and partially invariant solutions with respect to {Galilean} shifts and dilatation},
journal = {Ufa mathematical journal},
pages = {118--126},
year = {2013},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/}
}
E. V. Makarevich. Invariant and partially invariant solutions with respect to Galilean shifts and dilatation. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 118-126. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/
[1] Ovsyannikov L. V., “Programma podmodeli. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl
[2] Makarevich E. V., “Optimalnaya sistema podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravneniya sostoyaniya s razdelennoi plotnostyu”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 19–38 | MR
[3] Makarevich E. V., “Ierarkhiya podmodelei uravnenii gazovoi dinamiki s uravneniem sostoyaniya s razdelennoi plotnostyu”, Sibirskie elektronnye matematicheskie izvestiya, 9 (2012), 306–328 | MR
[4] Makarevich E. V., “Kollaps ili mgnovennyi istochnik gaza na pryamoi”, Ufimskii matematicheskii zhurnal, 4:4 (2012), 119–129
[5] Khabirov S. V., “Hierarchy of submodels of differential equations”, Archives of ALGA, 9 (2012), 79–94