Invariant and partially invariant solutions with respect to Galilean shifts and dilatation
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 118-126
Voir la notice de l'article provenant de la source Math-Net.Ru
In the work we consider a three-dimensional subalgebra embedded in a four-dimensional subalgebra in order to find the set of solutions and to adjoint them the solutions on subalgebras of higher dimension. Although the aim is not reached yet, we obtain invariant solutions of the rank 1 and partially invariant solutions of the rank 1 and defect 1. We obtain two submodels being invariant and partially invariant, seven solutions depend on arbitrary function and nineteen exact solutions.
Keywords:
gas dynamics, hierarchy of submodels, partially invariant solution.
Mots-clés : invariant solution
Mots-clés : invariant solution
@article{UFA_2013_5_3_a9,
author = {E. V. Makarevich},
title = {Invariant and partially invariant solutions with respect to {Galilean} shifts and dilatation},
journal = {Ufa mathematical journal},
pages = {118--126},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/}
}
TY - JOUR AU - E. V. Makarevich TI - Invariant and partially invariant solutions with respect to Galilean shifts and dilatation JO - Ufa mathematical journal PY - 2013 SP - 118 EP - 126 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/ LA - en ID - UFA_2013_5_3_a9 ER -
E. V. Makarevich. Invariant and partially invariant solutions with respect to Galilean shifts and dilatation. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 118-126. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a9/