A closedness of set of Dirichlet series sums
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 94-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider Dirichlet series. We study the problem of closedness for the set of the sums for such series in the space of functions holomorphic in a convex domain of a complex plane with a topology of uniform convergence on compact subsets. We obtain necessary and sufficient conditions under those every function from the closure of a linear span of exponents with positive indices is represented by a Dirichlet series. These conditions can be formulated only in terms of geometric characteristics of an index sequence and of the convex domain.
Keywords: exponent, Dirichlet series, entire function, invariant subspace.
Mots-clés : convex domain
@article{UFA_2013_5_3_a8,
     author = {A. S. Krivosheyev and O. A. Krivosheyeva},
     title = {A closedness of set of {Dirichlet} series sums},
     journal = {Ufa mathematical journal},
     pages = {94--117},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a8/}
}
TY  - JOUR
AU  - A. S. Krivosheyev
AU  - O. A. Krivosheyeva
TI  - A closedness of set of Dirichlet series sums
JO  - Ufa mathematical journal
PY  - 2013
SP  - 94
EP  - 117
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a8/
LA  - en
ID  - UFA_2013_5_3_a8
ER  - 
%0 Journal Article
%A A. S. Krivosheyev
%A O. A. Krivosheyeva
%T A closedness of set of Dirichlet series sums
%J Ufa mathematical journal
%D 2013
%P 94-117
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a8/
%G en
%F UFA_2013_5_3_a8
A. S. Krivosheyev; O. A. Krivosheyeva. A closedness of set of Dirichlet series sums. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 94-117. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a8/

[1] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[2] Goldberg A. A., Levin B. Ya., Ostrovskii I. V., “Tselye i meromorfnye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 85, VINITI, M., 1991, 5–185 | MR | Zbl

[3] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izvestiya RAN. Seriya matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[4] Krivosheeva O. A., Krivosheev A. S., “Kriterii spravedlivosti fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz, 46:4 (2012), 14–30 | DOI | MR | Zbl

[5] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[6] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[7] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[8] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[9] Koosis P., The logarithmic integral, v. I, Cambridge University Press, 1997

[10] Krivosheeva O. A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR | Zbl

[11] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimskii matematicheskii zhurnal, 3:2 (2011), 43–56

[12] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Analysis Mathematica, 11 (1985), 257–282 | DOI | MR | Zbl

[13] Krasichkov I. F., “Sravnenie tselykh funktsii konechnogo poryadka po raspredeleniyu ikh kornei”, Matematicheskii sbornik, 70(112):2 (1966), 198–230 | MR | Zbl

[14] Khabibullin B. N., “O roste tselykh funktsii eksponentsialnogo tipa vdol mnimoi osi”, Matematicheskii sbornik, 180:5 (1989), 706–719 | MR | Zbl

[15] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matematicheskii sbornik, 88(130):1 (1972), 3–30 | MR | Zbl

[16] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR