Construction of generalized solution for first order divergence type equation
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 77-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for a first order divergence type equation with the right hand side independent of the unknown function and with a discontinuous initial condition. This equation was first mentioned by J. M. Burgers in 1940 and it is a model equation for the system of equations describing the non-stationary motion of a gas. Various properties of the solution to this problem we studied in works by O. A. Oleinik (1957), J. Whitham (1974), S. N. Kruzhkov (1970), E. Yu. Panov (2006). The original problem is reduced to the Cauchy problem for Hamilton–Jacobi equation with a continuous initial condition. It is suggested to apply the method of singular characteristics to this problem, while this method was developed A. A. Melikyan for game problems. The effectiveness of technique is demonstrated by the example, when in the original equation the derivative w.r.t. the spatial variable is applied to a cubic polynomial of the unknown function, and boundary condition is specified as a “raising” step. The Hamiltonian in the modified problem is a third degree polynomial of a partial derivative for the unknown function, and the boundary condition is given by the piecewise linear convex function with a break in the origin. We single out the domains of the parameters for which the construction of a generalized solution is possible, and we describe the procedure of constructing the solution. It is shown that the solution involves nonsmooth singularities called the dispersal and equivocal surfaces according to the terminology of differential games. The constructing of the solution is illustrated by figures.
Keywords: Hamilton–Jacobi equation, generalized solution, method of characteristics.
@article{UFA_2013_5_3_a7,
     author = {V. A. Korneev},
     title = {Construction of generalized solution for first order divergence type equation},
     journal = {Ufa mathematical journal},
     pages = {77--93},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a7/}
}
TY  - JOUR
AU  - V. A. Korneev
TI  - Construction of generalized solution for first order divergence type equation
JO  - Ufa mathematical journal
PY  - 2013
SP  - 77
EP  - 93
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a7/
LA  - en
ID  - UFA_2013_5_3_a7
ER  - 
%0 Journal Article
%A V. A. Korneev
%T Construction of generalized solution for first order divergence type equation
%J Ufa mathematical journal
%D 2013
%P 77-93
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a7/
%G en
%F UFA_2013_5_3_a7
V. A. Korneev. Construction of generalized solution for first order divergence type equation. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 77-93. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a7/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravneniya i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 592 pp. | MR

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 624 pp. | MR

[3] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[4] Burgers J., “Application of a model system to illustrate some points of the statistical theory of free turbulence”, Nederl. Alcad. Wefensh. Proc. Acad. Sci. (Amsterdam), 43 (1940), 3–12 | MR

[5] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, UMN, 12:3(75) (1957), 3–73 | MR | Zbl

[6] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81(123):2 (1970), 228–255 | MR | Zbl

[7] Panov E. Yu., “O klassakh korrektnosti lokalno ogranichennykh obobschënnykh entropiinykh reshenii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka”, Fundament. i prikl. matem., 12:5 (2006), 175–188 | MR | Zbl

[8] Berkov N. A., Martynenko A. I., Minostsev V. B., Pushkar E. A., Shishanin O. E., Kurs vysshei matematiki, Uchebnoe posobie dlya VTUZov. Chast 3, ed. zasl. rab. VSh RF, prof. Minostsev V. B., MGIU, M., 2007, 494 pp.

[9] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, FIZMATLIT, M., 2003, 416 pp. | Zbl

[10] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, Uchebnoe posobie, MGU, M., 1999, 94 pp.

[11] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 336 pp. | Zbl

[12] Lions P. L., Souganidis P. E., “Differential Games, Optimal Control and Directional Derivatives of Viscosity Solutions of Bellman's and Isaacs' Equations”, SIAM Journal of Control and Optimization, 23:4 (1985), 566–583 | DOI | MR | Zbl

[13] Melikyan A. A., “Generalized Characteristics of First Order PDEs”, Applications in Optimal Control and Differential Games, Birkhauser, Boston, 1998, 320 pp. | MR | Zbl

[14] Crandall M. G., Lions P. L., “Viscosity Solutions of Hamilton–Jacobi Equations”, Trans. Amer. Math. Soc., 253 (1983), 1–42 | DOI | MR

[15] Kolpakova E. A., “Obobschennyi metod kharakteristik v teorii uravnenii Gamiltona–Yakobi i zakonov sokhraneniya”, Tr. IMM UrO RAN, 16, no. 5, 2010, 95–102

[16] Kuznetsov N. N., Rozhdestvenskii B. L., “Postroenie obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2(86) (1959), 211–215 | MR | Zbl

[17] Korneev V. A., “Postroenie obobschennogo resheniya uravneniya v divergentnoi forme metodom kharakteristik”, Differents. uravneniya, 43:12 (2007), 1664–1673 | MR | Zbl

[18] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR

[19] Melikyan A. A., “O postroenii slabykh razryvov v zadachakh optimalnogo upravleniya i differentsialnykh igr”, Izv. AN SSSR. Tekhn. kibernetika, 1984, no. 1, 45–50 | MR | Zbl

[20] Korneev V. A., Melikyan A. A., “Postroenie obobschennogo resheniya dvumernogo uravneniya Gamiltona–Yakobi metodom kharakteristik”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 6, 168–177

[21] Korneev V. A., “Chislennoe postroenie obobschennogo resheniya dvumernogo uravneniya Gamiltona–Yakobi”, Izv. RAN. Teoriya i sistemy upravleniya, 1998, no. 1, 92–98