Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 53-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we construct an optimal system of subalgebras for the nine-dimension Lie algebra of infinitesimal operators for a point symmetries group of a nonlinear heat equation with isotropic heat conductivity tensor and with a power dependence of the temperature. The results are presented as a lemma and a theorem. It is proven that up to transformations of internal automorphisms and some discrete automorphisms, there are 117 dissimilar subalgebras classes of various dimensions.
Keywords: nonlinear heat equation, Lie algebra
Mots-clés : optimal system of subalgebras.
@article{UFA_2013_5_3_a5,
     author = {A. M. Ilyasov},
     title = {Optimal system of {Lie} algebra subalgebras of the point symmetries group for nonlinear heat equation without source},
     journal = {Ufa mathematical journal},
     pages = {53--66},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/}
}
TY  - JOUR
AU  - A. M. Ilyasov
TI  - Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
JO  - Ufa mathematical journal
PY  - 2013
SP  - 53
EP  - 66
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/
LA  - en
ID  - UFA_2013_5_3_a5
ER  - 
%0 Journal Article
%A A. M. Ilyasov
%T Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
%J Ufa mathematical journal
%D 2013
%P 53-66
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/
%G en
%F UFA_2013_5_3_a5
A. M. Ilyasov. Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 53-66. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/

[1] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978, 336 pp. | MR

[2] Dorodnitsyn V. A., Knyazeva I. V., Svirschevskii S. R., “Gruppovye svoistva uravneniya teploprovodnosti s istochnikom v dvumernom i trekhmernom sluchayakh”, Differentsialnye uravneniya, 19:7 (1983), 1215–1223 | MR | Zbl

[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR | Zbl

[4] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, izd. NGTU, Novosibirsk, 2012, 659 pp.

[5] Khabirov S. V., “Neizomorfnye algebry Li, dopuskaemye modelyami gazovoi dinamiki”, Ufimskii matematicheskii zhurnal, 3:2 (2011), 87–90 | Zbl