Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 53-66
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we construct an optimal system of subalgebras for the nine-dimension Lie algebra of infinitesimal operators for a point symmetries group of a nonlinear heat equation with isotropic heat conductivity tensor and with a power dependence of the temperature. The results are presented as a lemma and a theorem. It is proven that up to transformations of internal automorphisms and some discrete automorphisms, there are 117 dissimilar subalgebras classes of various dimensions.
Keywords:
nonlinear heat equation, Lie algebra
Mots-clés : optimal system of subalgebras.
Mots-clés : optimal system of subalgebras.
@article{UFA_2013_5_3_a5,
author = {A. M. Ilyasov},
title = {Optimal system of {Lie} algebra subalgebras of the point symmetries group for nonlinear heat equation without source},
journal = {Ufa mathematical journal},
pages = {53--66},
year = {2013},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/}
}
TY - JOUR AU - A. M. Ilyasov TI - Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source JO - Ufa mathematical journal PY - 2013 SP - 53 EP - 66 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/ LA - en ID - UFA_2013_5_3_a5 ER -
A. M. Ilyasov. Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 53-66. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/
[1] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978, 336 pp. | MR
[2] Dorodnitsyn V. A., Knyazeva I. V., Svirschevskii S. R., “Gruppovye svoistva uravneniya teploprovodnosti s istochnikom v dvumernom i trekhmernom sluchayakh”, Differentsialnye uravneniya, 19:7 (1983), 1215–1223 | MR | Zbl
[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR | Zbl
[4] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, izd. NGTU, Novosibirsk, 2012, 659 pp.
[5] Khabirov S. V., “Neizomorfnye algebry Li, dopuskaemye modelyami gazovoi dinamiki”, Ufimskii matematicheskii zhurnal, 3:2 (2011), 87–90 | Zbl