Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 53-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct an optimal system of subalgebras for the nine-dimension Lie algebra of infinitesimal operators for a point symmetries group of a nonlinear heat equation with isotropic heat conductivity tensor and with a power dependence of the temperature. The results are presented as a lemma and a theorem. It is proven that up to transformations of internal automorphisms and some discrete automorphisms, there are 117 dissimilar subalgebras classes of various dimensions.
Keywords: nonlinear heat equation, Lie algebra
Mots-clés : optimal system of subalgebras.
@article{UFA_2013_5_3_a5,
     author = {A. M. Ilyasov},
     title = {Optimal system of {Lie} algebra subalgebras of the point symmetries group for nonlinear heat equation without source},
     journal = {Ufa mathematical journal},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/}
}
TY  - JOUR
AU  - A. M. Ilyasov
TI  - Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
JO  - Ufa mathematical journal
PY  - 2013
SP  - 53
EP  - 66
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/
LA  - en
ID  - UFA_2013_5_3_a5
ER  - 
%0 Journal Article
%A A. M. Ilyasov
%T Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source
%J Ufa mathematical journal
%D 2013
%P 53-66
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/
%G en
%F UFA_2013_5_3_a5
A. M. Ilyasov. Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 53-66. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a5/