On some special solutions of Eisenhart equation
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 40-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we study a $6$-dimensional pseudo-Riemannian space $V^6(g_{ij})$ with the signature $[++----]$, which admits projective motions, i.e., continuous transformation groups preserving geodesics. A general method of determining pseudo-Riemannian spaces admitting some nonhomothetic projective group $G_r$ was developed by A. V. Aminova. A. V. Aminova classified all Lorentzian manifolds of dimension $\geq3$ admitting nonhomothetic projective or affine infinitesimal transformations. The problem of classification is not solved for pseudo-Riemannian spaces with arbitrary signature. In order to find a pseudo-Riemannian space admitting a nonhomothetic infinitesimal projective transformation, one has to integrate the Eisenhart equation $$ h_{ij,k}=2g_{ij}\varphi_{,k}+g_{ik}\varphi_{,j}+g_{jk}\varphi_{,i}. $$ Pseudo-Riemannian manifolds for which there exist nontrivial solutions $h_{ij}\ne cg_{ij}$ to the Eisenhart equation are called $h$-spaces. It is known that the problem of describing such spaces depends on the type of an $h$-space, i.e., on the type of the bilinear form $L_Xg_{ij}$ determined by the characteristic of the $\lambda$-matrix $(h_{ij}-\lambda g_{ij})$. The number of possible types depends on the dimension and the signature of an $h$-space. In this work we find the metrics and determine quadratic first integrals of the corresponding geodesic lines equations for $6$-dimensional $h$-spaces of the type $[(21\ldots1)(21\ldots1)\ldots(1\ldots1)]$.
Keywords: differential geometry, pseudo-Riemannian manifolds, systems of partial differential equations.
@article{UFA_2013_5_3_a4,
     author = {Z. Kh. Zakirova},
     title = {On some special solutions of {Eisenhart} equation},
     journal = {Ufa mathematical journal},
     pages = {40--52},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a4/}
}
TY  - JOUR
AU  - Z. Kh. Zakirova
TI  - On some special solutions of Eisenhart equation
JO  - Ufa mathematical journal
PY  - 2013
SP  - 40
EP  - 52
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a4/
LA  - en
ID  - UFA_2013_5_3_a4
ER  - 
%0 Journal Article
%A Z. Kh. Zakirova
%T On some special solutions of Eisenhart equation
%J Ufa mathematical journal
%D 2013
%P 40-52
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a4/
%G en
%F UFA_2013_5_3_a4
Z. Kh. Zakirova. On some special solutions of Eisenhart equation. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 40-52. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a4/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Editorial URSS, M., 1998, 278 pp.

[2] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948, 316 pp.

[3] Konigs G., “Appl. II”: G. Darboux, Lecons sur la theorie generalle des surfaces, v. IV, 1896, 368

[4] Petrov A. Z., “O geodezicheskom otobrazhenii rimanovykh prostranstv neopredelennoi metriki”, Uch. zap. Kazan. un-ta, 109, no. 4, 1949, 7–36

[5] Aminova A. V., “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, Uspekhi Mat. Nauk, 48:2(290) (1993), 107–164 | MR | Zbl

[6] Fubini G., “Sui gruppi transformazioni geodetiche”, Mem. Acc. Torino. Cl. Fif. Mat. Nat., 53:2 (1903), 261–313 | Zbl

[7] Solodovnikov A. S., “Proektivnye preobrazovaniya rimanovykh prostranstv”, Uspekhi Mat. Nauk, 11:4 (1956), 45–116 | MR | Zbl

[8] Aminova A. V., “Algebry Li infinitezimalnykh proektivnykh preobrazovanii lorentsevykh mnogoobrazii”, Uspekhi Mat. Nauk, 50:1(301) (1995), 69–142 | MR | Zbl

[9] Zakirova Z. Kh., Proektivno-gruppovye svoistva 6-mernykh teorii tipa Kalutsy–Kleina, Kandidatskaya dissertatsiya, KGU, 2001, 129 pp.

[10] Shirokov P. A., “Postoyannye polya vektorov i tenzorov 2-go poryadka v rimanovykh prostranstvakh”, Izv. Kazansk. fiz.-mat. obsch., 25:2 (1925), 86–114

[11] Zakirova Z. Kh., “6-mernye $h$-prostranstva spetsialnogo tipa”, Mezhdunar. geom. semin. im. N. I. Lobachevskogo, Tez. dokl. (Kazan, 4–6 fevr. 1997), Kazan, 1997, 52

[12] Zakirova Z. Kh., “Pervye integraly uravnenii geodezicheskikh $h$-prostranstv tipa [51]”, Trudy geom. seminara. Mezhvuz. temat. sb. nauch. tr., 23, Kazan, 1997, 57–64 | MR | Zbl

[13] Zakirova Z. Kh., “Pervye integraly uravnenii geodezicheskikh $h$-prostranstv tipa [411]”, Izv. vuzov. Matem., 1999, no. 9(448), 78–79 | MR | Zbl

[14] Zakirova Z. Kh., “Zhestkie 6-mernye $h$-prostranstva postoyannoi krivizny”, Teoreticheskaya i matematicheskaya fizika, 158:3 (2009), 347–354 | DOI | MR | Zbl

[15] Zakirova Z. Kh., “Metriki 6-mernykh $h$-prostranstv tipov [3(21)], [(32)1], [(321)]”, Kratkie soobscheniya po fizike (FIAN), 38:9 (2011), 270–274

[16] Aminova A. V., “O kosoortogonalnykh reperakh i nekotorykh svoistvakh parallelnykh tenzornykh polei na rimanovykh mnogoobraziyakh”, Izv. vuzov. Matem., 1982, no. 6, 63–67 | MR | Zbl

[17] Aminova A. V., “O podvizhnom kosoortogonalnom repere i odnom tipe proektivnykh dvizhenii rimanovykh mnogoobrazii”, Izv. vuzov. Matem., 1982, no. 9, 69–74 | MR | Zbl