Quasi-analyticity criteria of Salinas–Korenblum type for general domains
Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 28-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a criterion of quasianalyticity in a boundary point of a rather general domain (not necessarily convex and simply-connected) if in a vicinity of this point the domain is close in some sense to an angle or is comparable with it.
Keywords: regular sequences, bilogarithmic quasianalyticity condition.
Mots-clés : Carleman class
@article{UFA_2013_5_3_a3,
     author = {R. A. Gaisin},
     title = {Quasi-analyticity criteria of {Salinas{\textendash}Korenblum} type for general domains},
     journal = {Ufa mathematical journal},
     pages = {28--39},
     year = {2013},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a3/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - Quasi-analyticity criteria of Salinas–Korenblum type for general domains
JO  - Ufa mathematical journal
PY  - 2013
SP  - 28
EP  - 39
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a3/
LA  - en
ID  - UFA_2013_5_3_a3
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T Quasi-analyticity criteria of Salinas–Korenblum type for general domains
%J Ufa mathematical journal
%D 2013
%P 28-39
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a3/
%G en
%F UFA_2013_5_3_a3
R. A. Gaisin. Quasi-analyticity criteria of Salinas–Korenblum type for general domains. Ufa mathematical journal, Tome 5 (2013) no. 3, pp. 28-39. http://geodesic.mathdoc.fr/item/UFA_2013_5_3_a3/

[1] Mandelbroit S., Kvazianaliticheskie klassy funktsii, M.–L., 1937, 108 pp.

[2] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955, 268 pp. | MR

[3] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Matem. sb., 130(172):4 (1986), 500–519 | MR | Zbl

[4] Salinas R. B., “Functions with null moments”, Rev. Acad. Ciencias (Madrid), 49 (1955), 331–368 | MR | Zbl

[5] Korenblyum B. I., “Kvazianaliticheskie klassy funktsii v kruge”, Doklady AN SSSR, 164:1 (1965), 36–39 | Zbl

[6] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR

[7] Gaisin R. A., “Ekvivaletnye kriterii kvazianalitichnosti klassa Karlemana v ugle”, Sbornik trudov Mezhdunarodnoi shkoly-konferentsii dlya studentov, aspirantov i molodykh uchenykh “Fundamentalnaya matematika i ee prilozheniya v estestvoznanii”, v. 1, Matematika, RITs BashGU, Ufa, 2012

[8] Dynkin E. M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy. Teoriya funktsii i funktsionalnyi analiz, Trudy VII Zimnei shkoly (Drogobych), AN SSSR, Tsentralnyi ekonomiko-matematicheskii institut, M., 1976, 40–73 | MR

[9] Yulmukhametov R. S., Approksimatsiya subgarmonicheskikh funktsii i primeneniya, Diss. $\dots$ dokt. fiz.-mat nauk, Ufa, 1986, 197 pp.

[10] Prilipko T. I., “Kvazianaliticheskie klassy funktsii v kompleksnoi oblasti”, Ukr. matem. zhurnal, 19:2 (1967), 127–134 | MR | Zbl

[11] Yu. V. Prokhorov (gl. red.), Matematicheskii entsiklopedicheskii slovar, Sovetskaya entsiklopediya, M., 1988, 847 pp. | MR | Zbl

[12] Couture R., “Un theoreme de Denjoy-Carleman sur une courbe du plan complexe”, Proceedings of the American math. soc., 85:3 (1982), 401–406 | MR | Zbl